Orthogonal complex structures in~$\mathbb{R}^4$
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 73 (2018) no. 1, pp. 91-159

Voir la notice de l'article provenant de la source Math-Net.Ru

Orthogonal complex structures in domains in $\mathbb{R}^4$ are studied using methods of multidimensional complex analysis. New results on removable singularities of such structures are established. The simplest multivalued orthogonal complex structures are investigated. A classification of quadrics in $\mathbb{CP}_3$ with respect to the action of the conformal group is given, and the discriminant sets of the twistor projections of model quadrics are described. Bibliography: 39 titles.
Keywords: twistor bundles, removable singularities
Mots-clés : complex structures, conformal maps, discriminant sets.
@article{RM_2018_73_1_a2,
     author = {E. M. Chirka},
     title = {Orthogonal complex structures in~$\mathbb{R}^4$},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {91--159},
     publisher = {mathdoc},
     volume = {73},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2018_73_1_a2/}
}
TY  - JOUR
AU  - E. M. Chirka
TI  - Orthogonal complex structures in~$\mathbb{R}^4$
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2018
SP  - 91
EP  - 159
VL  - 73
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_2018_73_1_a2/
LA  - en
ID  - RM_2018_73_1_a2
ER  - 
%0 Journal Article
%A E. M. Chirka
%T Orthogonal complex structures in~$\mathbb{R}^4$
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2018
%P 91-159
%V 73
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_2018_73_1_a2/
%G en
%F RM_2018_73_1_a2
E. M. Chirka. Orthogonal complex structures in~$\mathbb{R}^4$. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 73 (2018) no. 1, pp. 91-159. http://geodesic.mathdoc.fr/item/RM_2018_73_1_a2/