Orthogonal complex structures in~$\mathbb{R}^4$
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 73 (2018) no. 1, pp. 91-159
Voir la notice de l'article provenant de la source Math-Net.Ru
Orthogonal complex structures in domains in $\mathbb{R}^4$ are studied using methods of multidimensional complex analysis. New results on removable singularities of such structures are established. The simplest multivalued orthogonal complex structures are investigated. A classification of quadrics in $\mathbb{CP}_3$ with respect to the action of the conformal group is given, and the discriminant sets of the twistor projections of model quadrics are described.
Bibliography: 39 titles.
Keywords:
twistor bundles, removable singularities
Mots-clés : complex structures, conformal maps, discriminant sets.
Mots-clés : complex structures, conformal maps, discriminant sets.
@article{RM_2018_73_1_a2,
author = {E. M. Chirka},
title = {Orthogonal complex structures in~$\mathbb{R}^4$},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {91--159},
publisher = {mathdoc},
volume = {73},
number = {1},
year = {2018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2018_73_1_a2/}
}
E. M. Chirka. Orthogonal complex structures in~$\mathbb{R}^4$. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 73 (2018) no. 1, pp. 91-159. http://geodesic.mathdoc.fr/item/RM_2018_73_1_a2/