Halmos problems and related results in the theory of invariant subspaces
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 73 (2018) no. 1, pp. 31-90 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper contains a survey of main results in the theory of invariant subspaces that have a direct or intermediate connection with the well-known list of problems in operator theory posed by Halmos in 1970. For most results we present brief proofs, schemes of proofs, or basic ideas of proofs. Bibliography: 124 titles.
Keywords: Banach space, linear operator, operator algebra, invariant subspace.
@article{RM_2018_73_1_a1,
     author = {V. I. Lomonosov and V. S. Shulman},
     title = {Halmos problems and related results in the theory of invariant subspaces},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {31--90},
     year = {2018},
     volume = {73},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2018_73_1_a1/}
}
TY  - JOUR
AU  - V. I. Lomonosov
AU  - V. S. Shulman
TI  - Halmos problems and related results in the theory of invariant subspaces
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2018
SP  - 31
EP  - 90
VL  - 73
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/RM_2018_73_1_a1/
LA  - en
ID  - RM_2018_73_1_a1
ER  - 
%0 Journal Article
%A V. I. Lomonosov
%A V. S. Shulman
%T Halmos problems and related results in the theory of invariant subspaces
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2018
%P 31-90
%V 73
%N 1
%U http://geodesic.mathdoc.fr/item/RM_2018_73_1_a1/
%G en
%F RM_2018_73_1_a1
V. I. Lomonosov; V. S. Shulman. Halmos problems and related results in the theory of invariant subspaces. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 73 (2018) no. 1, pp. 31-90. http://geodesic.mathdoc.fr/item/RM_2018_73_1_a1/

[1] E. Albrecht, B. Chevreau, “Invariant subspaces for $\ell^p$-operators having Bishop's property ($\beta$) on a large part of their spectrum”, J. Operator Theory, 18:2 (1987), 339–372 | MR | Zbl

[2] E. Albrecht, B. Chevreau, “Invariant subspaces for certain representations of $H^{\infty}(G)$”, Functional analysis (Essen, 1991), Lecture Notes in Pure and Appl. Math., 150, Dekker, New York, 1994, 293–305 | MR | Zbl

[3] E. Albrecht, J. Eschmeier, “Analytical functional models and local spectral theory”, Proc. London Math. Soc. (3), 75:2 (1997), 323–348 | DOI | MR | Zbl

[4] C. Ambrozie, V. Müller, “Invariant subspaces for polynomially bounded operators”, J. Funct. Anal., 213:2 (2004), 321–345 | DOI | MR | Zbl

[5] C. Ambrozie, V. Müller, “Dominant Taylor spectrum and invariant subspaces”, J. Operator Theory, 61:1 (2009), 63–73 | MR | Zbl

[6] G. Androulakis, “A note on the method of minimal vectors”, Trends in Banach spaces and operator theory (Memphis, TN, 2001), Contemp. Math., 321, Amer. Math. Soc., Providence, RI, 2003, 29–36 | DOI | MR | Zbl

[7] S. Ansari, P. Enflo, “Extremal vectors and invariant subspaces”, Trans. Amer. Math. Soc., 350:2 (1998), 539–558 | DOI | MR | Zbl

[8] C. Apostol, “Functional calculus and invariant subspaces”, J. Operator Theory, 4:2 (1980), 159–190 | MR | Zbl

[9] C. Apostol, C. Foiaş, D. Voiculescu, “Some results on non-quasitriangular operators. IV”, Rev. Roumaine Math. Pures Appl., 18 (1973), 487–514 | MR | Zbl

[10] S. A. Argyros, R. G. Haydon, “A hereditarily indecomposable $\mathscr L_{\infty}$-space that solves the scalar-plus-compact problem”, Acta Math., 206:1 (2011), 1–54 | DOI | MR | Zbl

[11] S. A. Argyros, P. Motakis, “A reflexive hereditarily indecomposable space with the hereditary invariant subspace property”, Proc. London Math. Soc. (3), 108:6 (2014), 1381–1416 | DOI | MR | Zbl

[12] N. Aronszajn, K. T. Smith, “Invariant subspaces of completely continuous operators”, Ann. of Math. (2), 60:2 (1954), 345–350 | DOI | MR | Zbl

[13] W. B. Arveson, “A density theorems for operator algebras”, Duke Math. J., 34:4 (1967), 635–647 | DOI | MR | Zbl

[14] A. Atzmon, “Reducible representations of Abelian groups”, Ann. Inst. Fourier (Grenoble), 51:5 (2001), 1407–1418 | DOI | MR | Zbl

[15] A. Atzmon, G. Godefroy, “An application of the smooth variational priciple to the existence of nontrivial invariant subspaces”, C. R. Acad. Sci. Paris Sér. I Math., 332:2 (2001), 151–156 | DOI | MR | Zbl

[16] A. Atzmon, G. Godefroy, N. J. Kalton, “Invariant subspaces and the exponential map”, Positivity, 8:2 (2004), 101–107 | DOI | MR | Zbl

[17] B. Beauzamy, “Un operateur sans sous-espace invariant: simplification de l'exemple de P. Enflo”, Integral Equations Operator Theory, 8:3 (1985), 314–384 | DOI | MR | Zbl

[18] H. Bercovici, “Dual algebras and invariant subspaces”, A glimpse at Hilbert space operators, Oper. Theory Adv. Appl., 207, Birkhäuser Verlag, Basel, 2010, 135–176 | DOI | MR | Zbl

[19] H. Bercovici, C. Foiaş, C. Pearcy, Dual algebras with applications to invariant subspaces and dilation theory, CBMS Reg. Conf. Ser. Math., 56, Amer. Math. Soc., Providence, RI, 1985, xi+108 pp. | DOI | MR | Zbl

[20] M. A. Berger, Y. Wang, “Bounded semigroups of matrices”, Linear Algebra Appl., 166 (1992), 21–27 | DOI | MR | Zbl

[21] E. Bishop, R. R. Phelps, “A proof that every Banach space is subreflexive”, Bull. Amer. Math. Soc., 67 (1961), 97–98 | DOI | MR | Zbl

[22] S. W. Brown, “Some invariant subspaces for subnormal operators”, Integral Equations Operator Theory, 1:3 (1978), 310–333 | DOI | MR | Zbl

[23] S. W. Brown, “Hyponormal operators with thick spectra have invariant subspaces”, Ann. of Math. (2), 125:1 (1987), 93–103 | DOI | MR | Zbl

[24] S. W. Brown, “Lomonosov's theorem and essentially normal operators”, New Zealand J. Math., 23:1 (1994), 11–18 | MR | Zbl

[25] S. Brown, B. Chevreau, C. Pearcy, “Contractions with rich spectrum have invariant subspaces”, J. Operator Theory, 1:1 (1979), 123–136 | MR | Zbl

[26] S. W. Brown, B. Chevreau, C. Pearcy, “On the structure of contraction operators. II”, J. Funct. Anal., 76:1 (1988), 30–55 | DOI | MR | Zbl

[27] R. W. Carey, J. D. Pincus, “An invariant for certain operator algebras”, Proc. Nat. Acad. Sci. U.S.A., 71:5 (1974), 1952–1956 | DOI | MR | Zbl

[28] I. Chalendar, E. Fricain, A. I. Popov, D. Timotin, V. G. Troitsky, “Finitely strictly singular operators between James spaces”, J. Funct. Anal., 256:4 (2009), 1258–1268 | DOI | MR | Zbl

[29] I. Chalendar, J. R. Partington, “Convergence properties of minimal vectors for normal operators and weighted shifts”, Proc. Amer. Math. Soc., 133:2 (2005), 501–510 | DOI | MR | Zbl

[30] I. Chalendar, J. R. Partington, Modern approaches to the invariant-subspace problem, Cambridge Tracts in Math., 188, Cambridge Univ. Press, Cambridge, 2011, xii+285 pp. | DOI | MR | Zbl

[31] I. Colojoară, C. Foiaş, Theory of generalized spectral operators, Math. Appl., 9, Gordon and Breach, Science Publishers, New York–London–Paris, 1968, xvi+232 pp. | MR | Zbl

[32] J. B. Conway, Subnormal operators, Res. Notes Math., 51, Pitman (Advanced Publishing Program), Boston, MA–London, 1981, xvii+476 pp. | MR | Zbl

[33] J. B. Conway, A course in operator theory, Grad. Stud. Math., 21, Amer. Math. Soc., Providence, RI, 2000, xvi+372 pp. | MR | Zbl

[34] R. Deville, G. Godefroy, V. Zizler, “A smooth variational principle with applications to Hamilton–Jacobi equations in infinite dimensions”, J. Funct. Anal., 111:1 (1993), 197–212 | DOI | MR | Zbl

[35] M. Didas, “Invariant subspaces for commuting pairs with normal boundary dilation and dominating Taylor spectrum”, J. Operator Theory, 54:1 (2005), 169–187 | MR | Zbl

[36] P. G. Dixon, “Topologically irreducible representations and radicals in Banach algebras”, Proc. London Math. Soc. (3), 74:1 (1997), 174–200 | DOI | MR | Zbl

[37] R. Drnovšek, “A generalization of the Ando–Krieger theorem”, Publ. Math. Debrecen, 58:3 (2001), 515–521 | MR | Zbl

[38] R. Drnovšek, M. Kandić, “Ideal-triangularizability of semigroups of positive operators”, Integral Equations Operator Theory, 64:4 (2009), 539–552 | DOI | MR | Zbl

[39] K. Dykema, G. Tucci, “Hyperinvariant subspaces for some $B$-circular operators”, Math. Ann., 333:3 (2005), 485–523 | DOI | MR | Zbl

[40] J. Eschmeier, “Invariant subspaces for commuting contractions”, J. Operator Theory, 45:2 (2001), 413–443 | MR | Zbl

[41] J. Eschmeier, B. Prunaru, “Invariant subspaces for operators with Bishop's property $(\beta)$ and thick spectrum”, J. Funct. Anal., 94:1 (1990), 196–222 | DOI | MR | Zbl

[42] P. Enflo, “On the invariant subspace problem in Banach spaces”, Séminaire Maurey–Schwartz 1975–1976. Espaces $L^p$, applications radonifiantes et géométrie des espaces de Banach, Centre Math., École Polytech., Palaiseau, 1976, Exp. 14-15, 7 pp. | MR | Zbl

[43] P. Enflo, “On the invariant subspace problem in Banach spaces”, Acta Math., 158:3-4 (1987), 213–313 | DOI | MR | Zbl

[44] P. Enflo, V. Lomonosov, “Some aspects of the invariant subspace problem”, Handbook of the geometry of Banach spaces, v. 1, North-Holland, Amsterdam, 2001, 533–559 | DOI | MR | Zbl

[45] Q. Fang, J. Xia, “Invariant subspaces for certain finite-rank perturbations of diagonal operators”, J. Funct. Anal., 263:5 (2012), 1356–1377 | DOI | MR | Zbl

[46] C. Foiaş, I. B. Jung, E. Ko, C. Pearcy, “On quasinilpotent operators. II”, J. Aust. Math. Soc., 77:3 (2004), 349–356 | DOI | MR | Zbl

[47] C. Foiaş, I. B. Jung, E. Ko, C. Pearcy, “On quasinilpotent operators. III”, J. Operator Theory, 54:2 (2005), 401–414 | MR | Zbl

[48] C. Foias, I. B. Jung, E. Ko, C. Pearcy, “On rank-one perturbations of normal operators”, J. Funct. Anal., 253:2 (2007), 628–646 | DOI | MR | Zbl

[49] C. Foias, I. B. Jung, E. Ko, C. Pearcy, “On rank-one perturbations of normal operators. II”, Indiana Univ. Math. J., 57:6 (2008), 2745–2760 | DOI | MR | Zbl

[50] C. Foias, I. B. Jung, E. Ko, C. Pearcy, “Spectral decomposability of rank-one perturbations of normal operators”, J. Math. Anal. Appl., 375:2 (2011), 602–609 | DOI | MR | Zbl

[51] I. Ts. Gokhberg, M. G. Krein, “O vpolne nepreryvnykh operatorakh so spektrom, sosredotochennym v nule”, Dokl. AN SSSR, 128:2 (1959), 227–230 | MR | Zbl

[52] W. T. Gowers, B. Maurey, “The unconditional basic sequence problem”, J. Amer. Math. Soc., 6:4 (1993), 851–874 | DOI | MR | Zbl

[53] S. Grivaux, “Invariant subspaces for tridiagonal operators”, Bull. Sci. Math., 126:8 (2002), 681–691 | DOI | MR | Zbl

[54] S. Grivaux, M. Roginskaya, “On Read's type operators on Hilbert spaces”, Int. Math. Res. Not. IMRN, 2008 (2008), rnn083, 42 pp. | DOI | MR | Zbl

[55] S. Grivaux, M. Roginskaya, “An example of a minimal action of the free semi-group $\mathbb F_2^+$ on the Hilbert space”, Math. Res. Lett., 20:4 (2013), 695–704 | DOI | MR | Zbl

[56] S. Grivaux, M. Roginskaya, “A general approach to Read's type constructions of operators without non-trivial invariant closed subspaces”, Proc. Lond. Math. Soc. (3), 109:3 (2014), 596–652 | DOI | MR | Zbl

[57] D. Hadwin, “An operator still not satisfying Lomonosov's hypothesis”, Proc. Amer. Math. Soc., 123:10 (1995), 3039–3041 | DOI | MR | Zbl

[58] D. W. Hadwin, E. A. Nordgren, H. Radjavi, P. Rosenthal, “An operator non-satisfying Lomonosov's hypothesis”, J. Funct. Anal., 38:3 (1980), 410–415 | DOI | MR | Zbl

[59] P. R. Halmos, “Ten problems in Hilbert spaces”, Bull. Amer. Math. Soc., 76:5 (1970), 887–933 | DOI | MR | Zbl

[60] K. J. Harrison, H. Radjavi, P. Rosenthal, “A transitive medial subspace lattice”, Proc. Amer. Math. Soc., 28 (1971), 119–121 | DOI | MR | Zbl

[61] E. Ionascu, “On rank-one perturbations of diagonal operators”, Integral Equations Operator Theory, 39:4 (2001), 421–440 | DOI | MR | Zbl

[62] I. B. Jung, E. Ko, C. Pearcy, “On quasinilpotent operators”, Proc. Amer. Math. Soc., 131:7 (2003), 2121–2127 | DOI | MR | Zbl

[63] I. B. Jung, E. Ko, C. Pearcy, “Some nonhypertransitive operators”, Pacific J. Math., 220:2 (2005), 329–340 | DOI | MR | Zbl

[64] R. Jungers, The joint spectral radius. Theory and applications, Lecture Notes in Control and Inform. Sci., 385, Springer-Verlag, Berlin, 2009, xiv+144 pp. | DOI | MR

[65] M. Kennedy, H. Radjavi, “Spectral conditions on Lie and Jordan algebras of compact operators”, J. Funct. Anal., 256:10 (2009), 3143–3157 | DOI | MR | Zbl

[66] M. Kennedy, V. S. Shulman, Yu. V. Turovskii, “Invariant subspaces of subgraded Lie algebras of compact operators”, Integral Equations Operator Theory, 63:1 (2009), 47–93 | DOI | MR | Zbl

[67] H. J. Kim, “Hyperinvariant subspace problem for quasinilpotent operators”, Integral Equations Operator Theory, 61:1 (2008), 103–120 | DOI | MR | Zbl

[68] H. J. Kim, “Hyperinvariant subspaces for quasinilpotent operators on Hilbert spaces”, J. Math. Anal. Appl., 350:1 (2009), 262–270 | DOI | MR | Zbl

[69] K. Kitano, “A note on invariant subspaces”, Tôhoku Math. J. (2), 21 (1969), 144–151 | DOI | MR | Zbl

[70] H. Klaja, “Hyperinvariant subspaces for some compact perturbations of multiplication operators”, J. Operator Theory, 73:1 (2015), 127–142 ; (2014 (v1 – 2013)), 15 pp., arXiv: 1309.4760v3 | DOI | MR | Zbl

[71] M. Kosiek, A. Octavio, “On common invariant subspaces for commuting contractions with rich spectrum”, Indiana Univ. Math. J., 53:3 (2004), 823–844 | DOI | MR | Zbl

[72] M. Lindström, G. Schlüchtermann, “Lomonosov's technique and Burnside's theorem”, Canad. Math. Bull., 43:1 (2000), 87–89 | DOI | MR | Zbl

[73] M. S. Livshits, “O spektralnom razlozhenii lineinykh nesamosopryazhennykh operatorov”, Matem. sb., 34(76):1 (1954), 145–199 ; M. S. Livshits, “On spectral decomposition of linear non-selfadjoint operators”, Amer. Math. Soc. Transl. Ser. 2, 5, Amer. Math. Soc., Providence, RI, 1957, 67–114 | MR | Zbl

[74] A. I. Loginov, V. S. Shulman, “Nasledstvennaya i promezhutochnaya refleksivnost $W^*$-algebr”, Izv. AN SSSR. Ser. matem., 39:6 (1975), 1260–1273 | MR | Zbl

[75] A. I. Loginov, V. S. Shulman, “Invariantnye podprostranstva operatornykh algebr”, Itogi nauki i tekhn. Ser. Matem. anal., 26, VINITI, M., 1988, 65–145 ; A. I. Loginov, V. S. Shul'man, “Invariant subspaces of operator algebras”, J. Soviet Math., 54:5 (1991), 1177–1236 | MR | Zbl | DOI

[76] V. I. Lomonosov, “Ob invariantnykh podprostranstvakh semeistva operatorov, kommutiruyuschikh s vpolne nepreryvnym”, Funkts. analiz i ego pril., 7:3 (1973), 55–56 | MR | Zbl

[77] V. I. Lomonosov, “Ob odnoi konstruktsii spletayuschego operatora”, Funkts. analiz i ego pril., 14:1 (1980), 67–68 | MR | Zbl

[78] V. Lomonosov, “An extension of Burnside's theorem to infinite-dimensional spaces”, Israel J. Math., 75:2-3 (1991), 329–339 | DOI | MR | Zbl

[79] V. I. Lomonosov, “On real invariant subspaces of bounded operators with compact imaginary part”, Proc. Amer. Math. Soc., 115:3 (1992), 775–777 | DOI | MR | Zbl

[80] V. Lomonosov, “Positive functionals on general operator algebras”, J. Math. Anal. Appl., 245:1 (2000), 221–224 | DOI | MR | Zbl

[81] V. I. Lomonosov, V. S. Shulman, “Invariantnye podprostranstva dlya kommutiruyuschikh operatorov v veschestvennom banakhovom prostranstve”, Funkts. analiz i ego pril., 52:1 (2018), 65–69 | DOI

[82] E. R. Lorch, “The spectrum of linear transformations”, Trans. Amer. Math. Soc., 52:2 (1942), 238–248 | DOI | MR | Zbl

[83] Yu. I. Lyubich, V. I. Matsaev, “Ob operatorakh s otdelimym spektrom”, Matem. sb., 56(98):4 (1962), 433–468 ; Yu. I. Lyubich, V. I. Matsaev, “On operators with a separable spectrum”, Amer. Math. Soc. Transl. Ser. 2, 47, Amer. Math. Soc., Providence, RI, 1965, 89–129 | MR | Zbl | DOI

[84] G. MacDonald, H. Radjavi, “Standard triangularization of semigroups of non-negative operators”, J. Funct. Anal., 219:1 (2005), 161–176 | DOI | MR | Zbl

[85] V. I. Matsaev, “Ob odnom klasse vpolne nepreryvnykh operatorov”, Dokl. AN SSSR, 139:3 (1961), 548–551 | MR | Zbl

[86] V. I. Matsaev, “O volterrovykh operatorakh, poluchaemykh vozmuscheniem samosopryazhennykh”, Dokl. AN SSSR, 139:4 (1961), 810–813 | MR | Zbl

[87] J. D. Newburgh, “The variation of spectra”, Duke Math. J., 18 (1951), 165–176 | DOI | MR | Zbl

[88] R. F. Olin, J. E. Thomson, “Algebras of subnormal operators”, J. Funct. Anal., 37:3 (1980), 271–301 | DOI | MR | Zbl

[89] C. Pearcy, N. Salinas, “An invariant-subspace theorem”, Michigan Math. J., 20 (1973), 21–31 | DOI | MR | Zbl

[90] G. Pisier, “A polynomially bounded operator on Hilbert space which is not similar to a contraction”, J. Amer. Math. Soc., 10:2 (1997), 351–369 | DOI | MR | Zbl

[91] M. Putinar, “Hyponormal operators are subscalar”, J. Operator Theory, 12:2 (1984), 385–395 | MR | Zbl

[92] H. Radjavi, P. Rosenthal, Invariant subspaces, Ergeb. Math. Grenzgeb., 77, Springer-Verlag, New York–Heidelberg, 1973, xi+219 pp. | MR | Zbl

[93] H. Radjavi, P. Rosenthal, Simultaneous triangularization, Universitext, Springer-Verlag, New York, 2000, xii+318 pp. | DOI | MR | Zbl

[94] C. J. Read, “A solution to the invariant subspace problem”, Bull. London Math. Soc., 16:4 (1984), 337–401 | DOI | MR | Zbl

[95] C. J. Read, “A solution to the invariant subspace problem on the space $l_1$”, Bull. London Math. Soc., 17:4 (1985), 305–317 | DOI | MR | Zbl

[96] C. J. Read, “A short proof concerning the invariant subspace problem”, J. London Math. Soc. (2), 34:2 (1986), 335–348 | DOI | MR | Zbl

[97] C. J. Read, “The invariant subspace problem for a class of Banach spaces. II. Hypercyclic operators”, Israel J. Math., 63:1 (1988), 1–40 | DOI | MR | Zbl

[98] C. J. Read, “The invariant subspace problem for some Banach spaces with separable duals”, Proc. London Math. Soc. (3), 58:3 (1989), 583–607 | DOI | MR | Zbl

[99] C. J. Read, “Quasinilpotent operators and the invariant subspace problem”, J. London Math. Soc. (2), 56:3 (1997), 595–606 | DOI | MR | Zbl

[100] C. J. Read, “Strictly singular operators and the invariant subspace problem”, Studia Math., 132:3 (1999), 203–226 | DOI | MR | Zbl

[101] J. R. Ringrose, “Super-diagonal forms for compact linear operators”, Proc. London Math. Soc. (3), 12 (1962), 367–384 | DOI | MR | Zbl

[102] G.-C. Rota, W. G. Strang, “A note on the joint spectral radius”, Nederl. Akad. Wetensch. Proc. Ser. A, 63, Indag. Math. 22 (1960), 379–381 | DOI | MR | Zbl

[103] L. A. Sakhnovich, “Issledovanie ‘treugolnoi modeli’ nesamosopryazhennykh operatorov”, Izv. vuzov. Matem., 1959, no. 4, 141–149 | MR | Zbl

[104] D. E. Sarason, “Invariant subspaces and unstarred operator algebras”, Pacific J. Math., 17:3 (1966), 511–517 | DOI | MR | Zbl

[105] J. Schwartz, “Subdiagonalization of operators in Hilbert space with compact imaginary part”, Comm. Pure Appl. Math., 15:2 (1962), 159–172 | DOI | MR | Zbl

[106] V. S. Shulman, “Ob invariantnykh podprostranstvakh volterrovykh operatorov”, Funkts. analiz i ego pril., 18:2 (1984), 85–86 | MR | Zbl

[107] V. S. Shulman, Yu. V. Turovskii, “Joint spectral radius, operator semigroups, and a problem of W. Wojtyński”, J. Funct. Anal., 177:2 (2000), 383–441 | DOI | MR | Zbl

[108] V. S. Shulman, Yu. V. Turovskii, “Invariant subspaces of operator Lie algebras and Lie algebras with compact adjoint action”, J. Funct. Anal., 223:2 (2005), 425–508 | DOI | MR | Zbl

[109] V. S. Shulman, Yu. V. Turovskii, “Topological radicals, V. From algebra to spectral theory”, Algebraic methods in functional analysis, Oper. Theory Adv. Appl., 233, Birkhäuser/Springer, Basel, 2014, 171–280 | DOI | MR | Zbl

[110] A. Simonič, “An extension of Lomonosov's techniques to non-compact operators”, Trans. Amer. Math. Soc., 348:3 (1996), 975–995 | DOI | MR | Zbl

[111] J. E. Thomson, “Invariant subspaces for algebras of subnormal operators”, Proc. Amer. Math. Soc., 96:3 (1986), 462–464 | DOI | MR | Zbl

[112] T. T. Trent, “Invariant subspaces for operators in subalgebras of $L^{\infty}(\mu)$”, Proc. Amer. Math. Soc., 99:2 (1987), 268–272 | DOI | MR | Zbl

[113] V. G. Troitsky, “Lomonosov's theorem cannot be extended to chains of four operators”, Proc. Amer. Math. Soc., 128:2 (2000), 521–525 | DOI | MR | Zbl

[114] V. G. Troitsky, “Minimal vectors in arbitrary Banach spaces”, Proc. Amer. Math. Soc., 132:4 (2004), 1177–1180 | DOI | MR | Zbl

[115] Yu. V. Turovskii, “Spektralnye svoistva nekotorykh podalgebr Li i spektralnyi radius podmnozhestv v banakhovykh algebrakh”, Spektralnaya teoriya operatorov i ee prilozheniya, v. 6, Elm, Baku, 1985, 144–181 | MR | Zbl

[116] Yu. V. Turovskii, “Volterra semigroups have invariant subspaces”, J. Funct. Anal., 162:2 (1999), 313–322 | DOI | MR | Zbl

[117] Yu. V. Turovskii, V. S. Shulman, “Radikaly v banakhovykh algebrakh i nekotorye zadachi teorii radikalnykh banakhovykh algebr”, Funkts. analiz i ego pril., 35:4 (2001), 88–91 | DOI | MR | Zbl

[118] Yu. V. Turovskii, V. S. Shulman, “Topologicheskie radikaly i sovmestnyi spektralnyi radius”, Funkts. analiz i ego pril., 46:4 (2012), 61–82 | DOI | MR | Zbl

[119] L. L. Vaksman, D. L. Gurarii, “O banakhovykh algebrakh Li s kompaktnym prisoedinennym deistviem”, Teoriya funktsii, funktsionalnyi analiz i ikh prilozheniya, 24, Izd-vo Khark. gos. un-ta, Kharkov, 1975, 16–30 | Zbl

[120] D. Voiculescu, “Some results on norm-ideal perturbations of Hilbert-space operators. II”, J. Operator Theory, 5:1 (1981), 77–100 | MR | Zbl

[121] J. Wermer, “The existence of invariant subspaces”, Duke Math. J., 19:4 (1952), 615–622 | DOI | MR | Zbl

[122] W. Wojtyński, “A note on compact Banach–Lie algebras of Volterra type”, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 26:2 (1978), 105–107 | MR | Zbl

[123] W. Wojtyński, “On the existence of closed two-sided ideals in radical Banach algebras with compact elements”, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 26:2 (1978), 109–113 | MR | Zbl

[124] W. Wojtyński, “Quasinilpotent Banach–Lie algebras are Baker–Campbell–Hausdorff”, J. Funct. Anal., 153:2 (1998), 405–413 | DOI | MR | Zbl