@article{RM_2018_73_1_a0,
author = {D. B. Kaledin},
title = {Witt vectors, commutative and non-commutative},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {1--30},
year = {2018},
volume = {73},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2018_73_1_a0/}
}
D. B. Kaledin. Witt vectors, commutative and non-commutative. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 73 (2018) no. 1, pp. 1-30. http://geodesic.mathdoc.fr/item/RM_2018_73_1_a0/
[1] G. Almkvist, “The Grothendieck ring of the category of endomorphisms”, J. Algebra, 28:3 (1974), 375–388 | DOI | MR | Zbl
[2] S. Bloch, “Algebraic $K$-theory and crystalline cohomology”, Inst. Hautes Études Sci. Publ. Math., 47 (1977), 187–268 | DOI | MR | Zbl
[3] M. Bökstedt, W. C. Hsiang, I. Madsen, “The cyclotomic trace and algebraic $K$-theory of spaces”, Invent. Math., 111:3 (1993), 465–539 | DOI | MR | Zbl
[4] A. Connes, “Cohomologie cyclique et foncteur $\operatorname{Ext}^n$”, C. R. Acad. Sci. Paris Sér. I Math., 296:23 (1983), 953–958 | MR | Zbl
[5] A. Connes, “Non-commutative differential geometry”, Inst. Hautes Études Sci. Publ. Math., 62 (1985), 257–360 | DOI | MR | Zbl
[6] P. Deligne, L. Illusie, “Relévements modulo $p^2$ et décomposition du complexe de de Rham”, Invent. Math., 89:2 (1987), 247–270 | DOI | MR | Zbl
[7] A. I. Efimov, “Generalized non-commutative degeneration conjecture”, Proc. Steklov Inst. Math., 290:1 (2015), 1–10 | DOI | DOI | MR | Zbl
[8] B. L. Feigin, B. L. Tsygan, “Additive $K$-theory”, $K$-theory, arithmetic and geometry (Moscow, 1984–1986), Lecture Notes in Math., 1289, Springer, Berlin, 1987, 67–209 | DOI | MR | Zbl
[9] S. O. Gorchinskiy, D. V. Osipov, “A higher-dimensional Contou-Carrère symbol: local theory”, Sb. Math., 206:9 (2015), 1191–1259 | DOI | DOI | MR | Zbl
[10] S. O. Gorchinskiy, D. V. Osipov, “Explicit formula for the higher-dimensional Contou-Carrère symbol”, Russian Math. Surveys, 70:1 (2015), 171–173 | DOI | DOI | MR | Zbl
[11] S. O. Gorchinskiy, D. V. Osipov, “Higher-dimensional Contou-Carrère symbol and continuous automorphisms”, Funct. Anal. Appl., 50:4 (2016), 268–280 | DOI | DOI | MR | Zbl
[12] M. Raynaud, “Catégories fibrée et descente”, Revêtements étales et groupe fondamental (SGA 1), Séminaire de géométrie algébrique du Bois Marie 1960–61, Doc. Math. (Paris), 3, 2nd ed., ed. A. Grothendieck, Soc. Math. France, Paris, 2003, Exp. VI | MR | Zbl
[13] L. Hesselholt, “On the $p$-typical curves in Quillen's $K$-theory”, Acta Math., 177:1 (1996), 1–53 | DOI | MR | Zbl
[14] L. Hesselholt, “Witt vectors of non-commutative rings and topological cyclic homology”, Acta Math., 178:1 (1997), 109–141 | DOI | MR | Zbl
[15] L. Hesselholt, “Algebraic $K$-theory and trace invariants”, Proceedings of the international congress of mathematicians (Beijing, 2002), v. II, Invited lectures, Higher Education Press, Beijing, 2002, 415–425 | MR | Zbl
[16] L. Hesselholt, Correction to: ‘Witt vectors of non-commutative rings and topological cyclic homology’ , [Erratum to [14]], Acta Math., 195 (2005), 55–60 | DOI | MR | Zbl
[17] G. Hochschild, B. Kostant, A. Rosenberg, “Differential forms on regular affine algebras”, Trans. Amer. Math. Soc., 102:3 (1962), 383–408 | DOI | MR | Zbl
[18] L. Illusie, “Complexe de de Rham–Witt et cohomologie cristalline”, Ann. Sci. École Norm. Sup. (4), 12:4 (1979), 501–661 | DOI | MR | Zbl
[19] D. Kaledin, “Non-commutative Hodge-to-de Rham degeneration via the method of Deligne–Illusie”, Pure Appl. Math. Q., 4:3 (2008), 785–875 | DOI | MR | Zbl
[20] D. Kaledin, “Universal Witt vectors and the ‘Japanese cocycle’ ”, Mosc. Math. J., 12:3 (2012), 593–604 | MR | Zbl
[21] D. Kaledin, Mackey profunctors, 2014, 104 pp., arXiv: 1412.3248
[22] D. Kaledin, “Trace theories and localization”, Stacks and categories in geometry, topology, and algebra, Contemp. Math., 643, Amer. Math. Soc., Providence, RI, 2015, 227–262 | DOI | MR | Zbl
[23] D. Kaledin, “Bokstein homomorphism as a universal object”, Adv. in Math., 324 (2018), 267–325 ; (2015), 63 pp., arXiv: 1510.06258 | DOI | MR | Zbl
[24] D. Kaledin, “Cartier isomorphism for unital associative algebras”, Proc. Steklov Inst. Math., 290:1 (2015), 35–51 | DOI | DOI | MR | Zbl
[25] D. Kaledin, “Spectral sequences for cyclic homology”, Algebra, geometry, and physics in the 21st century, Progr. Math., 324, eds. D. Auroux, L. Katzarkov, T. Pantev, Y. Soibelman, Y. Tschinkel, Birkhäuser, Cham, 2017, 99–129, arXiv: 1601.00637 | DOI
[26] D. Kaledin, “Witt vectors as a polynomial functor”, Selecta Math. (N. S.) (to appear) ; vers. 3, 2017 (v1 – 2016), 49 pp., arXiv: 1602.04254v3 | DOI
[27] D. Kaledin, Hochschild–Witt complex, 2016, 64 pp., arXiv: 1604.01588
[28] D. Kaledin, “Polynomial Witt vectors and algebraic $K$-theory”, in preparation
[29] B. Keller, “On differential graded categories”, Proceedings of the international congress of mathematicians (Madrid, 2006), v. II, Invited lectures, Eur. Math. Soc., Zürich, 2006, 151–190 | MR | Zbl
[30] J.-L. Loday, Cyclic homology, Grundlehren Math. Wiss., 301, 2nd ed., Springer-Verlag, Berlin, 1998, xx+513 pp. | DOI | MR | Zbl
[31] D. O. Orlov, “Geometric realizations of quiver algebras”, Proc. Steklov Inst. Math., 290:1 (2015), 70–83 | DOI | DOI | MR | Zbl
[32] D. Orlov, “Smooth and proper noncommutative schemes and gluing of DG categories”, Adv. Math., 302 (2016), 59–105 | DOI | MR | Zbl
[33] G. S. Rinehart, “Differential forms on general commutative algebras”, Trans. Amer. Math. Soc., 108:2 (1963), 195–222 | DOI | MR | Zbl
[34] G. Segal, “Configuration-spaces and iterated loop-spaces”, Invent. Math., 21:3 (1973), 213–221 | DOI | MR | Zbl
[35] J.-P. Serre, “Sur la topologie des variétés algébriques en caractéristique $p$”, International symposium on algebraic topology, Universidad Nacional Autónoma de México and UNESCO, Mexico City, 1958, 24–53 | MR | Zbl
[36] B. L. Tsygan, “The homology of matrix Lie algebras over rings and the Hochschild homology”, Russian Math. Surveys, 38:2 (1983), 198–199 | DOI | MR | Zbl
[37] E. Witt, “Zyklische Körper und Algebren der Characteristik $p$ vom Grad $p^n$. Struktur diskret bewerteter perfekter Körper mit vollkommenem Restklassenkörper der Charakteristik $p^n$”, J. Reine Angew. Math., 1937:176 (1937), 126–140 | DOI | MR | Zbl