Polynomial Lie algebras and the Zelmanov–Shalev theorem
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 72 (2017) no. 6, pp. 1168-1170 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_2017_72_6_a5,
     author = {V. M. Buchstaber},
     title = {Polynomial {Lie} algebras and the {Zelmanov{\textendash}Shalev} theorem},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {1168--1170},
     year = {2017},
     volume = {72},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2017_72_6_a5/}
}
TY  - JOUR
AU  - V. M. Buchstaber
TI  - Polynomial Lie algebras and the Zelmanov–Shalev theorem
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2017
SP  - 1168
EP  - 1170
VL  - 72
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/RM_2017_72_6_a5/
LA  - en
ID  - RM_2017_72_6_a5
ER  - 
%0 Journal Article
%A V. M. Buchstaber
%T Polynomial Lie algebras and the Zelmanov–Shalev theorem
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2017
%P 1168-1170
%V 72
%N 6
%U http://geodesic.mathdoc.fr/item/RM_2017_72_6_a5/
%G en
%F RM_2017_72_6_a5
V. M. Buchstaber. Polynomial Lie algebras and the Zelmanov–Shalev theorem. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 72 (2017) no. 6, pp. 1168-1170. http://geodesic.mathdoc.fr/item/RM_2017_72_6_a5/

[1] V. M. Buchstaber, D. V. Leikin, Funct. Anal. Appl., 36:4 (2002), 267–280 | DOI | DOI | MR | Zbl

[2] V. M. Buchstaber, Proc. Steklov Inst. Math., 294 (2016), 176–200 | DOI | DOI | MR | Zbl

[3] D. V. Millionschikov, UMN, 72:6 (2017), 203–204

[4] A. Shalev, E. I. Zelmanov, J. Algebra, 189:2 (1997), 294–331 | DOI | MR | Zbl

[5] D. V. Millionshchikov, Naturally graded Lie algebras (Carnot algebras) of slow growth, 2017, 41 pp., arXiv: 1705.07494v1