Mots-clés : Poisson–Lie action, groupoid.
@article{RM_2017_72_6_a2,
author = {L. O. Chekhov and M. Mazzocco},
title = {On {a~Poisson} homogeneous space of bilinear forms with {a~Poisson{\textendash}Lie} action},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {1109--1156},
year = {2017},
volume = {72},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2017_72_6_a2/}
}
TY - JOUR AU - L. O. Chekhov AU - M. Mazzocco TI - On a Poisson homogeneous space of bilinear forms with a Poisson–Lie action JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2017 SP - 1109 EP - 1156 VL - 72 IS - 6 UR - http://geodesic.mathdoc.fr/item/RM_2017_72_6_a2/ LA - en ID - RM_2017_72_6_a2 ER -
L. O. Chekhov; M. Mazzocco. On a Poisson homogeneous space of bilinear forms with a Poisson–Lie action. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 72 (2017) no. 6, pp. 1109-1156. http://geodesic.mathdoc.fr/item/RM_2017_72_6_a2/
[1] A. I. Bondal, “A symplectic groupoid of triangular bilinear forms and the braid group”, Izv. Math., 68:4 (2004), 659–708 ; preprint IHES/M/00/02, Inst. Hautes Études Sci., Bures-sur-Yvette, 2000, 61 pp. | DOI | DOI | MR | Zbl
[2] A. Bondal, “Symplectic groupoids related to Poisson–Lie groups”, Proc. Steklov Inst. Math., 246 (2004), 34–53 | MR | Zbl
[3] V. Chari, A. Pressley, A guide to quantum groups, Cambridge Univ. Press, Cambridge, 1994, xvi+651 pp. | MR | Zbl
[4] L. Chekhov, M. Mazzocco, “Isomonodromic deformations and twisted Yangians arising in Teichmüller theory”, Adv. Math., 226:6 (2011), 4731–4775 | DOI | MR | Zbl
[5] L. Chekhov, M. Mazzocco, “Block triangular bilinear forms and braid group action”, Tropical geometry i integrable systems (Univ. of Glasgow, 2011), Contemp. Math., 580, Amer. Math. Soc., Providence, RI, 2012, 85–94 | DOI | MR | Zbl
[6] L. Chekhov, M. Mazzocco, “Poisson algebras of block-upper-triangular bilinear forms and braid group action”, Comm. Math. Phys., 322:1 (2013), 49–71 | DOI | MR | Zbl
[7] L. Chekhov, M. Mazzocco, V. Rubtsov, Algebras of quantum monodromy data and decorated character varieties, 2017, 22 pp., arXiv: 1705.01447
[8] M. Crainic, R. L. Fernandes, “Integrability of Lie brackets”, Ann. of Math. (2), 157:2 (2003), 575–620 | DOI | MR | Zbl
[9] P. A. M. Dirac, “Generalized Hamiltonian dynamics”, Canadian J. Math., 2 (1950), 129–148 | DOI | MR | Zbl
[10] V. G. Drinfeld, “On Poisson homogeneous spaces of Poisson–Lie groups”, Theoret. and Math. Phys., 95:2 (1993), 524–525 | DOI | MR | Zbl
[11] B. Dubrovin, “Geometry of 2D topological field theories”, Integrable systems and quantum groups (Montecatini Terme, 1993), Lecture Notes in Math., 1620, Springer, Berlin, 1996, 120–348 | DOI | MR | Zbl
[12] R. L. Fernandes, “A note on Poisson symmetric spaces”, Proceedings of the Cornelius Lanczos international centenary conference (Raleigh, NC, 1993), SIAM, Philadelphia, PA, 1994, 638–642 | MR | Zbl
[13] V. Fock, A. Marshakov, “A note on quantum groups and relativistic Toda theory”, Nuclear Phys. B Proc. Suppl., 56:3 (1997), 208–214 | DOI | MR | Zbl
[14] A. M. Gavrilik, A. U. Klimyk, “$q$-deformed orthogonal and pseudo-orthogonal algebras and their representations”, Lett. Math. Phys., 21:3 (1991), 215–220 | DOI | MR | Zbl
[15] K. R. Goodearl, M. Yakimov, “Poisson structures on affine spaces and flag varieties. II”, Trans. Amer. Math. Soc., 361:11 (2009), 5753–5780 | DOI | MR | Zbl
[16] V. V. Fock, A. A. Rosly, “Moduli space of flat connections as a Poisson manifold”, Advances in quantum field theory and statistical mechanics: 2nd Italian–Russian collaboration (Como, 1996), Internat. J. Modern Phys. B, 11:26-27 (1997), 3195–3206 | DOI | MR | Zbl
[17] M. V. Karasev, “Analogues of the objects of Lie group theory for nonlinear Poisson brackets”, Math. USSR-Izv., 28:3 (1987), 497–527 | DOI | MR | Zbl
[18] J.-H. Lu, “Classical dynamical $r$-matrices and homogeneous Poisson structures on $G/H$ and $K/T$”, Comm. Math. Phys., 212:2 (2000), 337–370 | DOI | MR | Zbl
[19] J.-H. Lu, A. Weinstein, “Poisson Lie groups, dressing transformations, and Bruhat decompositions”, J. Differential Geom., 31:2 (1990), 501–526 | DOI | MR | Zbl
[20] K. C. H. Mackenzie, General theory of Lie groupoids and Lie algebroids, London Math. Soc. Lecture Note Ser., 213, Cambridge Univ. Press, Cambridge, 2005, xxxviii+501 pp. | DOI | MR | Zbl
[21] K. Mikami, A. Weinstein, “Moments and reduction for symplectic groupoids”, Publ. Res. Inst. Math. Sci., 24:1 (1988), 121–140 | DOI | MR | Zbl
[22] A. Molev, Yangians and classical Lie algebras, Math. Surveys Monogr., 143, Amer. Math. Soc., Providence, RI, 2007, xviii+400 pp. | DOI | MR | Zbl
[23] A. I. Molev, E. Ragoucy, “Symmetries and invariants of twisted quantum algebras and associated Poisson algebras”, Rev. Math. Phys., 20:2 (2008), 173–198 | DOI | MR | Zbl
[24] A. I. Molev, E. Ragoucy, P. Sorba, “Coideal subalgebras in quantum affine algebras”, Rev. Math. Phys., 15:8 (2003), 789–822 | DOI | MR | Zbl
[25] J. E. Nelson, T. Regge, “Homotopy groups and $(2{+}1)$-dimensional quantum gravity”, Nuclear Phys. B, 328:1 (1989), 190–202 | DOI | MR
[26] J. E. Nelson, T. Regge, F. Zertuche, “Homotopy groups and $(2+1)$-dimensional quantum de Sitter gravity”, Nuclear Phys. B, 339:2 (1990), 516–532 | DOI | MR
[27] E. K. Sklyanin, On complete integrability of the Landau–Lifschitz equation, Preprint LOMI E-3-79, Leningrad, 1979
[28] M. Ugaglia, “On a Poisson structure on the space of Stokes matrices”, Int. Math. Res. Not., 1999:9 (1999), 473–493 | DOI | MR | Zbl
[29] S. Weinberg, The quantum theory of fields, v. 1, Foundations, Cambridge Univ. Press, Cambridge, 1995, xxvi+609 pp. | DOI | MR | Zbl
[30] A. Weinstein, “Coisotropic calculus and Poisson groupoids”, J. Math. Soc. Japan, 40:4 (1988), 705–727 | DOI | MR | Zbl