On a Poisson homogeneous space of bilinear forms with a Poisson–Lie action
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 72 (2017) no. 6, pp. 1109-1156 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\mathscr A$ be the space of bilinear forms on $\mathbb C^N$ with defining matrices $\mathbb A$ endowed with a quadratic Poisson structure of reflection equation type. The paper begins with a short description of previous studies of the structure, and then this structure is extended to systems of bilinear forms whose dynamics is governed by the natural action $\mathbb A\mapsto B\mathbb AB^{\mathrm{T}}$ of the $\mathrm{GL}_N$ Poisson–Lie group on $\mathscr A$. A classification is given of all possible quadratic brackets on $(B,\mathbb A)\in \mathrm{GL}_N\times \mathscr A$ preserving the Poisson property of the action, thus endowing $\mathscr A$ with the structure of a Poisson homogeneous space. Besides the product Poisson structure on $\mathrm{GL}_N\times \mathscr A$, there are two other (mutually dual) structures, which (unlike the product Poisson structure) admit reductions by the Dirac procedure to a space of bilinear forms with block upper triangular defining matrices. Further generalisations of this construction are considered, to triples $(B,C,\mathbb A)\in \mathrm{GL}_N\times \mathrm{GL}_N\times \mathscr A$ with the Poisson action $\mathbb A\mapsto B\mathbb AC^{\mathrm{T}}$, and it is shown that $\mathscr A$ then acquires the structure of a Poisson symmetric space. Generalisations to chains of transformations and to the quantum and quantum affine algebras are investigated, as well as the relations between constructions of Poisson symmetric spaces and the Poisson groupoid. Bibliography: 30 titles.
Keywords: of bilinear forms, block upper triangular matrices, quantum algebras, central elements, Dirac reduction
Mots-clés : Poisson–Lie action, groupoid.
@article{RM_2017_72_6_a2,
     author = {L. O. Chekhov and M. Mazzocco},
     title = {On {a~Poisson} homogeneous space of bilinear forms with {a~Poisson{\textendash}Lie} action},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {1109--1156},
     year = {2017},
     volume = {72},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2017_72_6_a2/}
}
TY  - JOUR
AU  - L. O. Chekhov
AU  - M. Mazzocco
TI  - On a Poisson homogeneous space of bilinear forms with a Poisson–Lie action
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2017
SP  - 1109
EP  - 1156
VL  - 72
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/RM_2017_72_6_a2/
LA  - en
ID  - RM_2017_72_6_a2
ER  - 
%0 Journal Article
%A L. O. Chekhov
%A M. Mazzocco
%T On a Poisson homogeneous space of bilinear forms with a Poisson–Lie action
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2017
%P 1109-1156
%V 72
%N 6
%U http://geodesic.mathdoc.fr/item/RM_2017_72_6_a2/
%G en
%F RM_2017_72_6_a2
L. O. Chekhov; M. Mazzocco. On a Poisson homogeneous space of bilinear forms with a Poisson–Lie action. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 72 (2017) no. 6, pp. 1109-1156. http://geodesic.mathdoc.fr/item/RM_2017_72_6_a2/

[1] A. I. Bondal, “A symplectic groupoid of triangular bilinear forms and the braid group”, Izv. Math., 68:4 (2004), 659–708 ; preprint IHES/M/00/02, Inst. Hautes Études Sci., Bures-sur-Yvette, 2000, 61 pp. | DOI | DOI | MR | Zbl

[2] A. Bondal, “Symplectic groupoids related to Poisson–Lie groups”, Proc. Steklov Inst. Math., 246 (2004), 34–53 | MR | Zbl

[3] V. Chari, A. Pressley, A guide to quantum groups, Cambridge Univ. Press, Cambridge, 1994, xvi+651 pp. | MR | Zbl

[4] L. Chekhov, M. Mazzocco, “Isomonodromic deformations and twisted Yangians arising in Teichmüller theory”, Adv. Math., 226:6 (2011), 4731–4775 | DOI | MR | Zbl

[5] L. Chekhov, M. Mazzocco, “Block triangular bilinear forms and braid group action”, Tropical geometry i integrable systems (Univ. of Glasgow, 2011), Contemp. Math., 580, Amer. Math. Soc., Providence, RI, 2012, 85–94 | DOI | MR | Zbl

[6] L. Chekhov, M. Mazzocco, “Poisson algebras of block-upper-triangular bilinear forms and braid group action”, Comm. Math. Phys., 322:1 (2013), 49–71 | DOI | MR | Zbl

[7] L. Chekhov, M. Mazzocco, V. Rubtsov, Algebras of quantum monodromy data and decorated character varieties, 2017, 22 pp., arXiv: 1705.01447

[8] M. Crainic, R. L. Fernandes, “Integrability of Lie brackets”, Ann. of Math. (2), 157:2 (2003), 575–620 | DOI | MR | Zbl

[9] P. A. M. Dirac, “Generalized Hamiltonian dynamics”, Canadian J. Math., 2 (1950), 129–148 | DOI | MR | Zbl

[10] V. G. Drinfeld, “On Poisson homogeneous spaces of Poisson–Lie groups”, Theoret. and Math. Phys., 95:2 (1993), 524–525 | DOI | MR | Zbl

[11] B. Dubrovin, “Geometry of 2D topological field theories”, Integrable systems and quantum groups (Montecatini Terme, 1993), Lecture Notes in Math., 1620, Springer, Berlin, 1996, 120–348 | DOI | MR | Zbl

[12] R. L. Fernandes, “A note on Poisson symmetric spaces”, Proceedings of the Cornelius Lanczos international centenary conference (Raleigh, NC, 1993), SIAM, Philadelphia, PA, 1994, 638–642 | MR | Zbl

[13] V. Fock, A. Marshakov, “A note on quantum groups and relativistic Toda theory”, Nuclear Phys. B Proc. Suppl., 56:3 (1997), 208–214 | DOI | MR | Zbl

[14] A. M. Gavrilik, A. U. Klimyk, “$q$-deformed orthogonal and pseudo-orthogonal algebras and their representations”, Lett. Math. Phys., 21:3 (1991), 215–220 | DOI | MR | Zbl

[15] K. R. Goodearl, M. Yakimov, “Poisson structures on affine spaces and flag varieties. II”, Trans. Amer. Math. Soc., 361:11 (2009), 5753–5780 | DOI | MR | Zbl

[16] V. V. Fock, A. A. Rosly, “Moduli space of flat connections as a Poisson manifold”, Advances in quantum field theory and statistical mechanics: 2nd Italian–Russian collaboration (Como, 1996), Internat. J. Modern Phys. B, 11:26-27 (1997), 3195–3206 | DOI | MR | Zbl

[17] M. V. Karasev, “Analogues of the objects of Lie group theory for nonlinear Poisson brackets”, Math. USSR-Izv., 28:3 (1987), 497–527 | DOI | MR | Zbl

[18] J.-H. Lu, “Classical dynamical $r$-matrices and homogeneous Poisson structures on $G/H$ and $K/T$”, Comm. Math. Phys., 212:2 (2000), 337–370 | DOI | MR | Zbl

[19] J.-H. Lu, A. Weinstein, “Poisson Lie groups, dressing transformations, and Bruhat decompositions”, J. Differential Geom., 31:2 (1990), 501–526 | DOI | MR | Zbl

[20] K. C. H. Mackenzie, General theory of Lie groupoids and Lie algebroids, London Math. Soc. Lecture Note Ser., 213, Cambridge Univ. Press, Cambridge, 2005, xxxviii+501 pp. | DOI | MR | Zbl

[21] K. Mikami, A. Weinstein, “Moments and reduction for symplectic groupoids”, Publ. Res. Inst. Math. Sci., 24:1 (1988), 121–140 | DOI | MR | Zbl

[22] A. Molev, Yangians and classical Lie algebras, Math. Surveys Monogr., 143, Amer. Math. Soc., Providence, RI, 2007, xviii+400 pp. | DOI | MR | Zbl

[23] A. I. Molev, E. Ragoucy, “Symmetries and invariants of twisted quantum algebras and associated Poisson algebras”, Rev. Math. Phys., 20:2 (2008), 173–198 | DOI | MR | Zbl

[24] A. I. Molev, E. Ragoucy, P. Sorba, “Coideal subalgebras in quantum affine algebras”, Rev. Math. Phys., 15:8 (2003), 789–822 | DOI | MR | Zbl

[25] J. E. Nelson, T. Regge, “Homotopy groups and $(2{+}1)$-dimensional quantum gravity”, Nuclear Phys. B, 328:1 (1989), 190–202 | DOI | MR

[26] J. E. Nelson, T. Regge, F. Zertuche, “Homotopy groups and $(2+1)$-dimensional quantum de Sitter gravity”, Nuclear Phys. B, 339:2 (1990), 516–532 | DOI | MR

[27] E. K. Sklyanin, On complete integrability of the Landau–Lifschitz equation, Preprint LOMI E-3-79, Leningrad, 1979

[28] M. Ugaglia, “On a Poisson structure on the space of Stokes matrices”, Int. Math. Res. Not., 1999:9 (1999), 473–493 | DOI | MR | Zbl

[29] S. Weinberg, The quantum theory of fields, v. 1, Foundations, Cambridge Univ. Press, Cambridge, 1995, xxvi+609 pp. | DOI | MR | Zbl

[30] A. Weinstein, “Coisotropic calculus and Poisson groupoids”, J. Math. Soc. Japan, 40:4 (1988), 705–727 | DOI | MR | Zbl