Singular solitons and spectral meromorphy
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 72 (2017) no. 6, pp. 1083-1107 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Along with regular solutions of soliton equations one usually can also construct interesting classes of singular solutions. The conditions for the compatibility of their singularities with the dynamics prescribed by the equation impose stringent restrictions on the form of the singular points. For instance, the known meromorphic solutions of the Korteweg-de Vries equation have second-order poles with respect to the space variable, and the leading coefficient is always a triangular number. Singular finite-gap solutions are an important example of this type of solution. In the case of one space dimension the eigenfunctions of the auxiliary linear operators with pole singularities that are compatible with the dynamics turn out to be also locally meromorphic for all values of the spectral parameter. This property, which will be called spectral meromorphy, makes it possible to define a natural indefinite metric on the space spanned by the eigenfunctions, and the number of negative squares of this metric is a new integral of motion. Also discussed are analogues of these results for two-dimensional problems. Bibliography: 50 titles.
Keywords: indefinite metrics, finite-gap potentials, finite-gap property on a single energy level
Mots-clés : singular solitons, Moutard transformations.
@article{RM_2017_72_6_a1,
     author = {P. G. Grinevich and S. P. Novikov},
     title = {Singular solitons and spectral meromorphy},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {1083--1107},
     year = {2017},
     volume = {72},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2017_72_6_a1/}
}
TY  - JOUR
AU  - P. G. Grinevich
AU  - S. P. Novikov
TI  - Singular solitons and spectral meromorphy
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2017
SP  - 1083
EP  - 1107
VL  - 72
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/RM_2017_72_6_a1/
LA  - en
ID  - RM_2017_72_6_a1
ER  - 
%0 Journal Article
%A P. G. Grinevich
%A S. P. Novikov
%T Singular solitons and spectral meromorphy
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2017
%P 1083-1107
%V 72
%N 6
%U http://geodesic.mathdoc.fr/item/RM_2017_72_6_a1/
%G en
%F RM_2017_72_6_a1
P. G. Grinevich; S. P. Novikov. Singular solitons and spectral meromorphy. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 72 (2017) no. 6, pp. 1083-1107. http://geodesic.mathdoc.fr/item/RM_2017_72_6_a1/

[1] P. G. Grinevich, S. P. Novikov, “Topological phenomena in the real periodic sine-Gordon theory”, J. Math. Phys., 44:8 (2003), 3174–3184 | DOI | MR | Zbl

[2] I. M. Krichever, S. P. Novikov, “Algebras of Virasoro type, Riemann surfaces and structures of the theory of solitons”, Funct. Anal. Appl., 21:2 (1987), 126–142 | DOI | MR | Zbl

[3] I. M. Krichever, S. P. Novikov, “Virasoro-type algebras, Riemann surfaces and strings in Minkowsky space”, Funct. Anal. Appl., 21:4 (1987), 294–307 | DOI | MR | Zbl

[4] I. M. Krichever, S. P. Novikov, “Algebras of Virasoro type, energy-momentum tensor, and decomposition operators on Riemann surfaces”, Funct. Anal. Appl., 23:1 (1989), 19–33 | DOI | MR | Zbl

[5] V. M. Buchstaber, D. V. Leikin, “Functional equations defining multiplication in a continuous Krichever–Novikov basis”, Russian Math. Surveys, 61:1 (2006), 165–167 | DOI | DOI | MR | Zbl

[6] V. M. Buchstaber, I. M. Krichever, “Integrable equations, addition theorems, and the Riemann–Schottky problem”, Russian Math. Surveys, 61:1 (2006), 19–78 | DOI | DOI | MR | Zbl

[7] V. M. Buchstaber, D. V. Leikin, “Addition laws on Jacobian varieties of plane algebraic curves”, Proc. Steklov Inst. Math., 251 (2005), 49–120 | MR | Zbl

[8] P. G. Grinevich, S. P. Novikov, “Singular finite-gap operators and indefinite metrics”, Russian Math. Surveys, 64:4 (2009), 625–650 | DOI | DOI | MR | Zbl

[9] T. Kappeler, P. Topalov, “Global wellposedness of KdV in $H^{-1}(\mathbb T,\mathbb{R})$”, Duke Math. J., 135:2 (2006), 327–360 | DOI | MR | Zbl

[10] B. A. Dubrovin, V. B. Matveev, S. P. Novikov, “Non-linear equations of Korteweg–de Vries type, finite-zone linear operators, and Abelian varieties”, Russian Math. Surveys, 31:1 (1976), 59–146 | DOI | MR | Zbl

[11] P. G. Grinevich, S. P. Novikov, “Singular solitons and indefinite metrics”, Dokl. Math., 83:1 (2011), 56–58 | DOI | MR | Zbl

[12] M. Adler, J. Moser, “On a class of polynomials connected with the Korteweg–de Vries equation”, Comm. Math. Phys., 61:1 (1978), 1–30 | DOI | MR | Zbl

[13] M. M. Crum, “Associated Sturm–Liouville systems”, Quart. J. Math. Oxford Ser. (2), 6 (1955), 121–127 | DOI | MR | Zbl

[14] V. A. Arkad'ev, A. K. Pogrebkov, M. K. Polivanov, “Singular solutions of the KdV equation and the inverse scattering method”, J. Soviet Math., 31:6 (1985), 3264–3279 | DOI | MR | Zbl

[15] I. M. Krichever, “Integration of nonlinear equations by the methods of algebraic geometry”, Funct. Anal. Appl., 11:1 (1977), 12–26 | DOI | MR | Zbl

[16] S. P. Novikov, “The periodic problem for the Korteweg–de Vries equation”, Funct. Anal. Appl., 8:3 (1974), 236–246 | DOI | MR | Zbl

[17] J. J. Duistermaat, F. A. Grünbaum, “Differential equations in the spectral parameter”, Comm. Math. Phys., 103:2 (1986), 177–240 | DOI | MR | Zbl

[18] L. S. Pontryagin, “Hermitian operators in a space with an indefinite metric”, Selected works, v. 1, Classics Soviet Math., Gordon Breach Science Publishers, New York, 1986, 303–334 | MR | MR | Zbl | Zbl

[19] P. G. Grinevich, S. P. Novikov, “Singular soliton operators and indefinite metrics”, Bull. Braz. Math. Soc. (N. S.), 44:4 (2013), 809–840 | DOI | MR | Zbl

[20] P. A. Clarkson, E. L. Mansfield, “The second Painlevé equation, its hierarchy and associated special polynomials”, Nonlinearity, 16:3 (2003), R1–R26 | DOI | MR | Zbl

[21] I. M. Krichever, “Spectral theory of finite-zone nonstationary Schrödinger operators. A nonstationary Peierls model”, Funct. Anal. Appl., 20:3 (1986), 203–214 | DOI | MR | Zbl

[22] B. A. Dubrovin, S. M. Natanzon, “Real theta-function solutions of the Kadomtsev–Petviashvili equation”, Math. USSR-Izv., 32:2 (1989), 269–288 | DOI | MR | Zbl

[23] P. G. Grinevich, S. P. Novikov, “Spectrally meromorphic operators and non-linear systems”, Russian Math. Surveys, 69:5 (2014), 924–926 | DOI | DOI | MR | Zbl

[24] P. G. Grinevich, A. Yu. Orlov, “Virasoro action on Riemann surfaces, Grassmanians, $\det\overline{\partial}_J$ and Segal–Wilson $\tau$-function”, Problems of modern quantum field theory (Alushta, 1989), Res. Rep. Phys., Springer, Berlin, 1989, 86–106 | MR

[25] P. G. Grinevich, S. P. Novikov, “On $\mathbf s$-meromorphic ordinary differential operators”, Russian Math. Surveys, 71:6 (2016), 1143-1145 | DOI | DOI | MR | Zbl

[26] H. Knôrrer, E. Trubowitz, “A directional compactification of the complex Bloch variety”, Comment. Math. Helv., 65:1 (1990), 114–149 | DOI | MR | Zbl

[27] S. V. Manakov, “Metod obratnoi zadachi rasseyaniya i dvumernye evolyutsionnye uravneniya”, UMN, 31:5(191) (1976), 245–246 | MR | Zbl

[28] B. A. Dubrovin, I. M. Krichever, S. P. Novikov, “The Schrödinger equation in a periodic field and Riemann surfaces”, Soviet Math. Dokl., 17:4 (1976), 947–951 | MR | Zbl

[29] A. P. Veselov, S. P. Novikov, “Finite-zone, two-dimensional, potential Schrödinger operators. Explicit formulas and evolution equations”, Soviet Math. Dokl., 30:3 (1984), 588–591 | MR | Zbl

[30] A. P. Veselov, S. P. Novikov, “Finite-zone, two-dimensional Schrödinger operators. Potential operators”, Soviet Math. Dokl., 30:3 (1984), 705–708 | MR | Zbl

[31] I. V. Cherednik, “Reality conditions in “finite-zone integration””, Soviet Phys. Dokl., 25:6 (1980), 450–452 | MR | Zbl

[32] I. M. Krichever, “Spectral theory of two-dimensional periodic operators and its applications”, Russian Math. Surveys, 44:2 (1989), 145–225 | DOI | MR | Zbl

[33] I. A. Taimanov, “The Weierstrass representation of closed surfaces in $\mathbb{R}^3$”, Funct. Anal. Appl., 32:4 (1998), 258–267 | DOI | DOI | MR | Zbl

[34] P. G. Grinevich, S. P. Novikov, “Two-dimensional ‘inverse scattering problem’ for negative energies and generalized-analytic functions. I. Energies below the ground state”, Funct. Anal. Appl., 22:1 (1988), 19–27 | DOI | MR | Zbl

[35] P. G. Grinevich, “Scattering transformation at fixed non-zero energy for the two-dimensional Schrödinger operator with potential decaying at infinity”, Russian Math. Surveys, 55:6 (2000), 1015–1083 | DOI | DOI | MR | Zbl

[36] “Increasing solutions of the Schrödinger equation”, Soviet Phys. Dokl., 10 (1966), 1033–1035 | Zbl

[37] I. N. Vekua, Generalized analytic functions, Pergamon Press, London–Paris–Frankfurt; Addison-Wesley Publishing Co., Inc., Reading, MA, 1962, xxix+668 pp. | MR | MR | Zbl | Zbl

[38] L. Bers, Theory of pseudo-analytic functions, Institute for Mathematics and Mechanics, New York Univ., New York, 1953, i+iii+187 pp. | MR | Zbl

[39] P. G. Grinevich, S. V. Manakov, “Inverse scattering problem for the two-dimensional Schrd̈inger operator, the $\overline{\partial}$-method and nonlinear equations”, Funct. Anal. Appl., 20:2 (1986), 94–103 | DOI | MR | Zbl

[40] P. G. Grinevich, R. G. Novikov, “Faddeev eigenfunctions for point potentials in two dimensions”, Phys. Lett. A, 376:12-13 (2012), 1102–1106 | DOI | MR | Zbl

[41] P. G. Grinevich, R. G. Novikov, “Faddeev eigenfunctions for multipoint potentials”, Eurasian Journal of Mathematical and Computer Applications, 1:2 (2013), 76–91

[42] M. Music, P. Perry, S. Siltanen, “Exceptional circles of radial potentials”, Inverse Problems, 29:4 (2013), 045004, 25 pp. | DOI | MR | Zbl

[43] P. G. Grinevich, R. G. Novikov, “Moutard transform approach to generalized analytic functions with contour poles”, Bull. Sci. Math., 140:6 (2016), 638–656 | DOI | MR | Zbl

[44] P. G. Grinevich, R. G. Novikov, “Generalized analytic functions, Moutard-type transforms, and holomorphic maps”, Funct. Anal. Appl., 50:2 (2016), 150–152 | DOI | DOI | MR | Zbl

[45] P. G. Grinevich, R. G. Novikov, “Moutard transform for the generalized analytic functions”, J. Geom. Anal., 26:4 (2016), 2984–2995 | DOI | MR | Zbl

[46] T. Moutard, “Sur la construction des équations de la forme $\frac{1}{z}\,\frac{d^2z}{dx\,dy}=\lambda(x,y)$, qui admettent une intégrale générale explicite”, J. École Polytechnique, 45 (1878), 1–11 | Zbl

[47] V. B. Matveev, M. A. Salle, Darboux transformations and solitons, Springer Ser. Nonlinear Dynam., Springer-Verlag, Berlin, 1991, x+120 pp. | MR | Zbl

[48] I. A. Taimanov, “The Moutard transformation of two-dimensional Dirac operators and Möbius geometry”, Math. Notes, 97:1 (2015), 124–135 | DOI | DOI | MR | Zbl

[49] I. A. Taimanov, “Blowing up solutions of the modified Novikov–Veselov equation and minimal surfaces”, Theoret. and Math. Phys., 182:2 (2015), 173–181 | DOI | DOI | MR | Zbl

[50] I. A. Taimanov, S. P. Tsarëv, “On the Moutard transformation and its applications to spectral theory and soliton equations”, J. Math. Sci. (N. Y.), 170:3 (2010), 371–387 | DOI | MR | Zbl