Mots-clés : singular solitons, Moutard transformations.
@article{RM_2017_72_6_a1,
author = {P. G. Grinevich and S. P. Novikov},
title = {Singular solitons and spectral meromorphy},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {1083--1107},
year = {2017},
volume = {72},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2017_72_6_a1/}
}
P. G. Grinevich; S. P. Novikov. Singular solitons and spectral meromorphy. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 72 (2017) no. 6, pp. 1083-1107. http://geodesic.mathdoc.fr/item/RM_2017_72_6_a1/
[1] P. G. Grinevich, S. P. Novikov, “Topological phenomena in the real periodic sine-Gordon theory”, J. Math. Phys., 44:8 (2003), 3174–3184 | DOI | MR | Zbl
[2] I. M. Krichever, S. P. Novikov, “Algebras of Virasoro type, Riemann surfaces and structures of the theory of solitons”, Funct. Anal. Appl., 21:2 (1987), 126–142 | DOI | MR | Zbl
[3] I. M. Krichever, S. P. Novikov, “Virasoro-type algebras, Riemann surfaces and strings in Minkowsky space”, Funct. Anal. Appl., 21:4 (1987), 294–307 | DOI | MR | Zbl
[4] I. M. Krichever, S. P. Novikov, “Algebras of Virasoro type, energy-momentum tensor, and decomposition operators on Riemann surfaces”, Funct. Anal. Appl., 23:1 (1989), 19–33 | DOI | MR | Zbl
[5] V. M. Buchstaber, D. V. Leikin, “Functional equations defining multiplication in a continuous Krichever–Novikov basis”, Russian Math. Surveys, 61:1 (2006), 165–167 | DOI | DOI | MR | Zbl
[6] V. M. Buchstaber, I. M. Krichever, “Integrable equations, addition theorems, and the Riemann–Schottky problem”, Russian Math. Surveys, 61:1 (2006), 19–78 | DOI | DOI | MR | Zbl
[7] V. M. Buchstaber, D. V. Leikin, “Addition laws on Jacobian varieties of plane algebraic curves”, Proc. Steklov Inst. Math., 251 (2005), 49–120 | MR | Zbl
[8] P. G. Grinevich, S. P. Novikov, “Singular finite-gap operators and indefinite metrics”, Russian Math. Surveys, 64:4 (2009), 625–650 | DOI | DOI | MR | Zbl
[9] T. Kappeler, P. Topalov, “Global wellposedness of KdV in $H^{-1}(\mathbb T,\mathbb{R})$”, Duke Math. J., 135:2 (2006), 327–360 | DOI | MR | Zbl
[10] B. A. Dubrovin, V. B. Matveev, S. P. Novikov, “Non-linear equations of Korteweg–de Vries type, finite-zone linear operators, and Abelian varieties”, Russian Math. Surveys, 31:1 (1976), 59–146 | DOI | MR | Zbl
[11] P. G. Grinevich, S. P. Novikov, “Singular solitons and indefinite metrics”, Dokl. Math., 83:1 (2011), 56–58 | DOI | MR | Zbl
[12] M. Adler, J. Moser, “On a class of polynomials connected with the Korteweg–de Vries equation”, Comm. Math. Phys., 61:1 (1978), 1–30 | DOI | MR | Zbl
[13] M. M. Crum, “Associated Sturm–Liouville systems”, Quart. J. Math. Oxford Ser. (2), 6 (1955), 121–127 | DOI | MR | Zbl
[14] V. A. Arkad'ev, A. K. Pogrebkov, M. K. Polivanov, “Singular solutions of the KdV equation and the inverse scattering method”, J. Soviet Math., 31:6 (1985), 3264–3279 | DOI | MR | Zbl
[15] I. M. Krichever, “Integration of nonlinear equations by the methods of algebraic geometry”, Funct. Anal. Appl., 11:1 (1977), 12–26 | DOI | MR | Zbl
[16] S. P. Novikov, “The periodic problem for the Korteweg–de Vries equation”, Funct. Anal. Appl., 8:3 (1974), 236–246 | DOI | MR | Zbl
[17] J. J. Duistermaat, F. A. Grünbaum, “Differential equations in the spectral parameter”, Comm. Math. Phys., 103:2 (1986), 177–240 | DOI | MR | Zbl
[18] L. S. Pontryagin, “Hermitian operators in a space with an indefinite metric”, Selected works, v. 1, Classics Soviet Math., Gordon Breach Science Publishers, New York, 1986, 303–334 | MR | MR | Zbl | Zbl
[19] P. G. Grinevich, S. P. Novikov, “Singular soliton operators and indefinite metrics”, Bull. Braz. Math. Soc. (N. S.), 44:4 (2013), 809–840 | DOI | MR | Zbl
[20] P. A. Clarkson, E. L. Mansfield, “The second Painlevé equation, its hierarchy and associated special polynomials”, Nonlinearity, 16:3 (2003), R1–R26 | DOI | MR | Zbl
[21] I. M. Krichever, “Spectral theory of finite-zone nonstationary Schrödinger operators. A nonstationary Peierls model”, Funct. Anal. Appl., 20:3 (1986), 203–214 | DOI | MR | Zbl
[22] B. A. Dubrovin, S. M. Natanzon, “Real theta-function solutions of the Kadomtsev–Petviashvili equation”, Math. USSR-Izv., 32:2 (1989), 269–288 | DOI | MR | Zbl
[23] P. G. Grinevich, S. P. Novikov, “Spectrally meromorphic operators and non-linear systems”, Russian Math. Surveys, 69:5 (2014), 924–926 | DOI | DOI | MR | Zbl
[24] P. G. Grinevich, A. Yu. Orlov, “Virasoro action on Riemann surfaces, Grassmanians, $\det\overline{\partial}_J$ and Segal–Wilson $\tau$-function”, Problems of modern quantum field theory (Alushta, 1989), Res. Rep. Phys., Springer, Berlin, 1989, 86–106 | MR
[25] P. G. Grinevich, S. P. Novikov, “On $\mathbf s$-meromorphic ordinary differential operators”, Russian Math. Surveys, 71:6 (2016), 1143-1145 | DOI | DOI | MR | Zbl
[26] H. Knôrrer, E. Trubowitz, “A directional compactification of the complex Bloch variety”, Comment. Math. Helv., 65:1 (1990), 114–149 | DOI | MR | Zbl
[27] S. V. Manakov, “Metod obratnoi zadachi rasseyaniya i dvumernye evolyutsionnye uravneniya”, UMN, 31:5(191) (1976), 245–246 | MR | Zbl
[28] B. A. Dubrovin, I. M. Krichever, S. P. Novikov, “The Schrödinger equation in a periodic field and Riemann surfaces”, Soviet Math. Dokl., 17:4 (1976), 947–951 | MR | Zbl
[29] A. P. Veselov, S. P. Novikov, “Finite-zone, two-dimensional, potential Schrödinger operators. Explicit formulas and evolution equations”, Soviet Math. Dokl., 30:3 (1984), 588–591 | MR | Zbl
[30] A. P. Veselov, S. P. Novikov, “Finite-zone, two-dimensional Schrödinger operators. Potential operators”, Soviet Math. Dokl., 30:3 (1984), 705–708 | MR | Zbl
[31] I. V. Cherednik, “Reality conditions in “finite-zone integration””, Soviet Phys. Dokl., 25:6 (1980), 450–452 | MR | Zbl
[32] I. M. Krichever, “Spectral theory of two-dimensional periodic operators and its applications”, Russian Math. Surveys, 44:2 (1989), 145–225 | DOI | MR | Zbl
[33] I. A. Taimanov, “The Weierstrass representation of closed surfaces in $\mathbb{R}^3$”, Funct. Anal. Appl., 32:4 (1998), 258–267 | DOI | DOI | MR | Zbl
[34] P. G. Grinevich, S. P. Novikov, “Two-dimensional ‘inverse scattering problem’ for negative energies and generalized-analytic functions. I. Energies below the ground state”, Funct. Anal. Appl., 22:1 (1988), 19–27 | DOI | MR | Zbl
[35] P. G. Grinevich, “Scattering transformation at fixed non-zero energy for the two-dimensional Schrödinger operator with potential decaying at infinity”, Russian Math. Surveys, 55:6 (2000), 1015–1083 | DOI | DOI | MR | Zbl
[36] “Increasing solutions of the Schrödinger equation”, Soviet Phys. Dokl., 10 (1966), 1033–1035 | Zbl
[37] I. N. Vekua, Generalized analytic functions, Pergamon Press, London–Paris–Frankfurt; Addison-Wesley Publishing Co., Inc., Reading, MA, 1962, xxix+668 pp. | MR | MR | Zbl | Zbl
[38] L. Bers, Theory of pseudo-analytic functions, Institute for Mathematics and Mechanics, New York Univ., New York, 1953, i+iii+187 pp. | MR | Zbl
[39] P. G. Grinevich, S. V. Manakov, “Inverse scattering problem for the two-dimensional Schrd̈inger operator, the $\overline{\partial}$-method and nonlinear equations”, Funct. Anal. Appl., 20:2 (1986), 94–103 | DOI | MR | Zbl
[40] P. G. Grinevich, R. G. Novikov, “Faddeev eigenfunctions for point potentials in two dimensions”, Phys. Lett. A, 376:12-13 (2012), 1102–1106 | DOI | MR | Zbl
[41] P. G. Grinevich, R. G. Novikov, “Faddeev eigenfunctions for multipoint potentials”, Eurasian Journal of Mathematical and Computer Applications, 1:2 (2013), 76–91
[42] M. Music, P. Perry, S. Siltanen, “Exceptional circles of radial potentials”, Inverse Problems, 29:4 (2013), 045004, 25 pp. | DOI | MR | Zbl
[43] P. G. Grinevich, R. G. Novikov, “Moutard transform approach to generalized analytic functions with contour poles”, Bull. Sci. Math., 140:6 (2016), 638–656 | DOI | MR | Zbl
[44] P. G. Grinevich, R. G. Novikov, “Generalized analytic functions, Moutard-type transforms, and holomorphic maps”, Funct. Anal. Appl., 50:2 (2016), 150–152 | DOI | DOI | MR | Zbl
[45] P. G. Grinevich, R. G. Novikov, “Moutard transform for the generalized analytic functions”, J. Geom. Anal., 26:4 (2016), 2984–2995 | DOI | MR | Zbl
[46] T. Moutard, “Sur la construction des équations de la forme $\frac{1}{z}\,\frac{d^2z}{dx\,dy}=\lambda(x,y)$, qui admettent une intégrale générale explicite”, J. École Polytechnique, 45 (1878), 1–11 | Zbl
[47] V. B. Matveev, M. A. Salle, Darboux transformations and solitons, Springer Ser. Nonlinear Dynam., Springer-Verlag, Berlin, 1991, x+120 pp. | MR | Zbl
[48] I. A. Taimanov, “The Moutard transformation of two-dimensional Dirac operators and Möbius geometry”, Math. Notes, 97:1 (2015), 124–135 | DOI | DOI | MR | Zbl
[49] I. A. Taimanov, “Blowing up solutions of the modified Novikov–Veselov equation and minimal surfaces”, Theoret. and Math. Phys., 182:2 (2015), 173–181 | DOI | DOI | MR | Zbl
[50] I. A. Taimanov, S. P. Tsarëv, “On the Moutard transformation and its applications to spectral theory and soliton equations”, J. Math. Sci. (N. Y.), 170:3 (2010), 371–387 | DOI | MR | Zbl