@article{RM_2017_72_5_a9,
author = {E. S. Kudina and A. D. Mednykh},
title = {On the asymptotics of volume for {non-Euclidean} simplices},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {974--976},
year = {2017},
volume = {72},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2017_72_5_a9/}
}
E. S. Kudina; A. D. Mednykh. On the asymptotics of volume for non-Euclidean simplices. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 72 (2017) no. 5, pp. 974-976. http://geodesic.mathdoc.fr/item/RM_2017_72_5_a9/
[1] D. V. Alekseevskij, E. B. Vinberg, A. S. Solodovnikov, Geometry II, Encyclopaedia Math. Sci., 29, Springer, Berlin, 1993, 1–138 | DOI | MR | Zbl
[2] N. Abrosimov, A. Mednykh, Rigidity and symmetry, Fields Inst. Commun., 70, Springer, New York, 2014, 1–26 | DOI | MR | Zbl
[3] K. Aomoto, Nagoya Math. J., 68 (1977), 1–16 | DOI | MR | Zbl
[4] T. Kohno, Intelligence of low dimensional topology 2006, Ser. Knots Everything, 40, World Sci. Publ., Hackensack, NJ, 2007, 179–188 | DOI | MR | Zbl
[5] J. G. Ratcliffe, Foundations of hyperbolic manifolds, Graduate Texts in Math., 149, Springer, New York, 2006, xii+779 pp. | DOI | MR | Zbl
[6] F. Luo, Geom. Dedicata, 64:3 (1997), 277–282 | DOI | MR | Zbl
[7] B. Karliğa, Geom. Dedicata, 109 (2004), 1–6 | DOI | MR | Zbl