Controllability implies mixing.~I. Convergence in the total variation metric
    
    
  
  
  
      
      
      
        
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 72 (2017) no. 5, pp. 939-953
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			This paper is the first part of a project to study the interconnection between the controllability properties of a dynamical system and the large-time asymptotics of trajectories for the associated stochastic system. It is proved that the approximate controllability to a given point and the solid controllability from the same point imply the uniqueness of a stationary measure and exponential mixing in the total variation metric. This result is then applied to random differential equations on a compact Riemannian manifold. In the second part of the project, the solid controllability will be replaced by a stabilisability condition, and it will be proved that this is still sufficient for the uniqueness of a stationary distribution, whereas the convergence to it occurs in the weaker dual-Lipschitz metric.
Bibliography: 21 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
controllability, ergodicity, exponential mixing.
                    
                    
                    
                  
                
                
                @article{RM_2017_72_5_a3,
     author = {A. R. Shirikyan},
     title = {Controllability implies {mixing.~I.} {Convergence} in the total variation metric},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {939--953},
     publisher = {mathdoc},
     volume = {72},
     number = {5},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2017_72_5_a3/}
}
                      
                      
                    TY - JOUR AU - A. R. Shirikyan TI - Controllability implies mixing.~I. Convergence in the total variation metric JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2017 SP - 939 EP - 953 VL - 72 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RM_2017_72_5_a3/ LA - en ID - RM_2017_72_5_a3 ER -
A. R. Shirikyan. Controllability implies mixing.~I. Convergence in the total variation metric. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 72 (2017) no. 5, pp. 939-953. http://geodesic.mathdoc.fr/item/RM_2017_72_5_a3/
