Controllability implies mixing.~I. Convergence in the total variation metric
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 72 (2017) no. 5, pp. 939-953

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is the first part of a project to study the interconnection between the controllability properties of a dynamical system and the large-time asymptotics of trajectories for the associated stochastic system. It is proved that the approximate controllability to a given point and the solid controllability from the same point imply the uniqueness of a stationary measure and exponential mixing in the total variation metric. This result is then applied to random differential equations on a compact Riemannian manifold. In the second part of the project, the solid controllability will be replaced by a stabilisability condition, and it will be proved that this is still sufficient for the uniqueness of a stationary distribution, whereas the convergence to it occurs in the weaker dual-Lipschitz metric. Bibliography: 21 titles.
Keywords: controllability, ergodicity, exponential mixing.
@article{RM_2017_72_5_a3,
     author = {A. R. Shirikyan},
     title = {Controllability implies {mixing.~I.} {Convergence} in the total variation metric},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {939--953},
     publisher = {mathdoc},
     volume = {72},
     number = {5},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2017_72_5_a3/}
}
TY  - JOUR
AU  - A. R. Shirikyan
TI  - Controllability implies mixing.~I. Convergence in the total variation metric
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2017
SP  - 939
EP  - 953
VL  - 72
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_2017_72_5_a3/
LA  - en
ID  - RM_2017_72_5_a3
ER  - 
%0 Journal Article
%A A. R. Shirikyan
%T Controllability implies mixing.~I. Convergence in the total variation metric
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2017
%P 939-953
%V 72
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_2017_72_5_a3/
%G en
%F RM_2017_72_5_a3
A. R. Shirikyan. Controllability implies mixing.~I. Convergence in the total variation metric. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 72 (2017) no. 5, pp. 939-953. http://geodesic.mathdoc.fr/item/RM_2017_72_5_a3/