New approaches to integrable hierarchies of topological type
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 72 (2017) no. 5, pp. 841-887 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This survey is devoted to a large class of systems of partial differential equations which on the one hand appear in classical problems of mathematical physics and on the other hand provide an efficient tool for the description of enumerative invariants in algebraic geometry. Particular attention is paid to new approaches to these systems, in particular, to the approach proposed in a recent paper of the author. Bibliography: 57 titles.
Keywords: moduli spaces of curves, cohomological field theories, systems of partial differential equations.
@article{RM_2017_72_5_a1,
     author = {A. Y. Buryak},
     title = {New approaches to integrable hierarchies of topological type},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {841--887},
     year = {2017},
     volume = {72},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2017_72_5_a1/}
}
TY  - JOUR
AU  - A. Y. Buryak
TI  - New approaches to integrable hierarchies of topological type
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2017
SP  - 841
EP  - 887
VL  - 72
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/RM_2017_72_5_a1/
LA  - en
ID  - RM_2017_72_5_a1
ER  - 
%0 Journal Article
%A A. Y. Buryak
%T New approaches to integrable hierarchies of topological type
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2017
%P 841-887
%V 72
%N 5
%U http://geodesic.mathdoc.fr/item/RM_2017_72_5_a1/
%G en
%F RM_2017_72_5_a1
A. Y. Buryak. New approaches to integrable hierarchies of topological type. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 72 (2017) no. 5, pp. 841-887. http://geodesic.mathdoc.fr/item/RM_2017_72_5_a1/

[1] K. Behrend, “Gromov–Witten invariants in algebraic geometry”, Invent. Math., 127:3 (1997), 601–617 | DOI | MR | Zbl

[2] K. Behrend, Yu. Manin, “Stacks of stable maps and Gromov–Witten invariants”, Duke Math. J., 85:1 (1996), 1–60 | DOI | MR | Zbl

[3] A. Brini, G. Carlet, S. Romano, P. Rossi, “Rational reductions of the 2D-Toda hierarchy and mirror symmetry”, J. Eur. Math. Soc. (JEMS), 19:3 (2017), 835–880 | DOI | MR | Zbl

[4] A. Buryak, “Double ramification cycles and integrable hierarchies”, Comm. Math. Phys., 336:3 (2015), 1085–1107 | DOI | MR | Zbl

[5] A. Buryak, “Dubrovin–Zhang hierarchy for the Hodge integrals”, Commun. Number Theory Phys., 9:2 (2015), 239–272 | DOI | MR | Zbl

[6] A. Buryak, B. Dubrovin, J. Guéré, P. Rossi, Tau-structure for the double ramification hierarchies, 2016, 56 pp., arXiv: 1602.05423

[7] A. Buryak, B. Dubrovin, J. Guéré, P. Rossi, Integrable systems of double ramification type, 2016, 46 pp., arXiv: 1609.04059

[8] A. Buryak, J. Guéré, “Towards a description of the double ramification hierarchy for Witten's $r$-spin class”, J. Math. Pures Appl. (9), 106:5 (2016), 837–865 | DOI | MR | Zbl

[9] A. Buryak, J. Guéré, P. Rossi, DR/DZ equivalence conjecture and tautological relations, 2017, 44 pp., arXiv: 1705.03287

[10] A. Buryak, H. Posthuma, S. Shadrin, “On deformations of quasi-Miura transformations and the Dubrovin–Zhang bracket”, J. Geom. Phys., 62:7 (2012), 1639–1651 | DOI | MR | Zbl

[11] A. Buryak, H. Posthuma, S. Shadrin, “A polynomial bracket for the Dubrovin–Zhang hierarchies”, J. Differential Geom., 92:1 (2012), 153–185 | DOI | MR | Zbl

[12] A. Buryak, P. Rossi, “Double ramification cycles and quantum integrable systems”, Lett. Math. Phys., 106:3 (2016), 289–317 | DOI | MR | Zbl

[13] A. Buryak, P. Rossi, “Recursion relations for double ramification hierarchies”, Comm. Math. Phys., 342:2 (2016), 533–568 | DOI | MR | Zbl

[14] A. Buryak, P. Rossi, S. Shadrin, “Bi-Hamiltonian structure for the double ramification hierarchy”, in preparation

[15] A. Buryak, S. Shadrin, L. Spitz, D. Zvonkine, “Integrals of $\psi$-classes over double ramification cycles”, Amer. J. Math., 137:3 (2015), 699–737 | DOI | MR | Zbl

[16] G. Carlet, B. Dubrovin, Y. Zhang, “The extended Toda hierarchy”, Mosc. Math. J., 4:2 (2004), 313–332 | MR | Zbl

[17] A. Chiodo, “The Witten top Chern class via $K$-theory”, J. Algebraic Geom., 15:4 (2006), 681–707 | DOI | MR | Zbl

[18] L. A. Dickey, Soliton equations and Hamiltonian systems, Adv. Ser. Math. Phys., 26, 2nd ed., World Scientific Publishing Co., Inc., River Edge, NJ, 2003, xii+408 pp. | DOI | MR | Zbl

[19] B. Dubrovin, Y. Zhang, Normal forms of hierarchies of integrable PDEs, Frobenius manifolds and Gromov–Witten invariants, 2001, 187 pp., arXiv: math/0108160

[20] B. Dubrovin, Y. Zhang, “Virasoro symmetries of the extended Toda hierarchy”, Comm. Math. Phys., 250:1 (2004), 161–193 | DOI | MR | Zbl

[21] C. Faber, “A conjectural description of the tautological ring of the moduli space of curves”, Moduli of curves and abelian varieties, Aspects Math., E33, Friedr. Vieweg, Braunschweig, 1999, 109–129 | MR | Zbl

[22] C. Faber, S. Shadrin, D. Zvonkine, “Tautological relations and the $r$-spin Witten conjecture”, Ann. Sci. Éc. Norm. Supér. (4), 43:4 (2010), 621–658 | DOI | MR | Zbl

[23] H. Fan, T. Jarvis, Y. Ruan, “The Witten equation, mirror symmetry, and quantum singularity theory”, Ann. of Math. (2), 178:1 (2013), 1–106 | DOI | MR | Zbl

[24] E. Getzler, “The Virasoro conjecture for Gromov–Witten invariants”, Algebraic geometry: Hirzebruch 70 (Warsaw, 1998), Contemp. Math., 241, Amer. Math. Soc., Providence, RI, 1999, 147–176 | DOI | MR | Zbl

[25] T. Graber, R. Vakil, “Relative virtual localization and vanishing of tautological classes on moduli spaces of curves”, Duke Math. J., 130:1 (2005), 1–37 | DOI | MR | Zbl

[26] S. Grushevsky, I. Krichever, “The universal Whitham hierarchy and the geometry of the moduli space of pointed Riemann surfaces”, Geometry of Riemann surfaces and their moduli spaces, Surv. Differ. Geom., 14, Int. Press, Somerville, MA, 2009, 111–129 | DOI | MR | Zbl

[27] S. Grushevsky, I. Krichever, “Real-normalized differentials and the elliptic Calogero–Moser system”, Complex geometry and dynamics, Abel Symp., 10, Springer, Cham, 2015, 123–137 | DOI | MR | Zbl

[28] R. Hain, “Normal functions and the geometry of moduli spaces of curves”, Handbook of moduli, v. I, Adv. Lect. Math. (ALM), 24, Int. Press, Somerville, MA, 2013, 527–578 | MR | Zbl

[29] J. Harris, I. Morrison, Moduli of curves, Grad. Texts in Math., 187, Springer-Verlag, New York, 1998, xiv+366 pp. | DOI | MR | Zbl

[30] F. Janda, R. Pandharipande, A. Pixton, D. Zvonkine, “Double ramification cycles on the moduli spaces of curves”, Publ. Math. Inst. Hautes Études Sci., 125 (2017), 221–266 | DOI | MR | Zbl

[31] M. Kazarian, “KP hierarchy for Hodge integrals”, Adv. Math., 221:1 (2009), 1–21 | DOI | MR | Zbl

[32] M. E. Kazarian, S. K. Lando, “An algebro-geometric proof of Witten's conjecture”, J. Amer. Math. Soc., 20:4 (2007), 1079–1089 | DOI | MR | Zbl

[33] M. Kontsevich, “Intersection theory on the moduli space of curves and the matrix Airy function”, Comm. Math. Phys., 147:1 (1992), 1–23 | DOI | MR | Zbl

[34] M. Kontsevich, Yu. Manin, “Gromov–Witten classes, quantum cohomology, and enumerative geometry”, Comm. Math. Phys., 164:3 (1994), 525–562 | DOI | MR | Zbl

[35] I. M. Krichever, “Real normalized differentials and Arbarello's conjecture”, Funct. Anal. Appl., 46:2 (2012), 110–120 | DOI | DOI | MR | Zbl

[36] J. Li, G. Tian, “Virtual moduli cycles and Gromov–Witten invariants of algebraic varieties”, J. Amer. Math. Soc., 11:1 (1998), 119–174 | DOI | MR | Zbl

[37] S.-Q. Liu, Y. Zhang, C. Zhou, Fractional Volterra hierarchy, 2017, 22 pp., arXiv: 1702.02840

[38] E. Looijenga, “Cellular decompositions of compactified moduli spaces of pointed curves”, The moduli space of curves (Texel Island, 1994), Progr. Math., 129, Birkhäuser Boston, Boston, MA, 1995, 369–400 | DOI | MR | Zbl

[39] Yu. I. Manin, P. Zograf, “Invertible cohomological field theories and Weil–Petersson volumes”, Ann. Inst. Fourier (Grenoble), 50:2 (2000), 519–535 | DOI | MR | Zbl

[40] S. Marcus, J. Wise, Stable maps to rational curves and the relative Jacobian, 2013, 11 pp., arXiv: 1310.5981

[41] D. Maulik, R. Pandharipande, “New calculations in Gromov–Witten theory”, Pure Appl. Math. Q., 4:2 (2008), 469–500 | DOI | MR | Zbl

[42] M. Mirzakhani, “Weil–Petersson volumes and intersection theory on the moduli space of curves”, J. Amer. Math. Soc., 20:1 (2007), 1–23 | DOI | MR | Zbl

[43] T. Mochizuki, “The virtual class of the moduli stack of stable $r$-spin curves”, Comm. Math. Phys., 264:1 (2006), 1–40 | DOI | MR | Zbl

[44] D. Mumford, “Towards an enumerative geometry of the moduli space of curves”, Arithmetic and geometry, v. II, Progr. Math., 36, Birkhäuser Boston, Boston, MA, 1983, 271–328 | MR | Zbl

[45] A. Okounkov, R. Pandharipande, “The equivariant Gromov–Witten theory of $\mathbb{P}^1$”, Ann. of Math. (2), 163:2 (2006), 561–605 | DOI | MR | Zbl

[46] A. Okounkov, R. Pandharipande, “Gromov–Witten theory, Hurwitz numbers, and matrix models”, Algebraic geometry – Seattle 2005, Proc. Sympos. Pure Math., 80, Part 1, Amer. Math. Soc., Providence, RI, 2009, 325–414 | DOI | MR | Zbl

[47] R. Pandharipande, A. Pixton, D. Zvonkine, “Relations on $\overline{\mathcal M}_{g,n}$ via $3$-spin structures”, J. Amer. Math. Soc., 28:1 (2015), 279–309 | DOI | MR | Zbl

[48] R. Pandharipande, A. Pixton, D. Zvonkine, Tautological relations via $r$-spin structures, 2016, 70 pp., arXiv: 1607.00978

[49] A. Polishchuk, A. Vaintrob, “Algebraic construction of Witten's top Chern class”, Advances in algebraic geometry motivated by physics (Lowell, MA, 2000), Contemp. Math., 276, Amer. Math. Soc., Providence, RI, 2001, 229–249 | DOI | MR | Zbl

[50] P. Rossi, “Integrability, quantization and moduli spaces of curves”, SIGMA, 13 (2017), 060, 29 pp. | DOI | MR

[51] S. Shadrin, “BCOV theory via Givental group action on cohomological fields theories”, Mosc. Math. J., 9:2 (2009), 411–429 | MR | Zbl

[52] C. Teleman, “The structure of $2$D semi-simple field theories”, Invent. Math., 188:3 (2012), 525–588 | DOI | MR | Zbl

[53] R. Vakil, “The moduli space of curves and Gromov–Witten theory”, Enumerative invariants in algebraic geometry and string theory, Lecture Notes in Math., 1947, Springer, Berlin, 2008, 143–198 | DOI | MR | Zbl

[54] E. Witten, “Two-dimensional gravity and intersection theory on moduli space”, Surveys in differential geometry (Cambridge, MA, 1990), Lehigh Univ., Bethlehem, PA, 1991, 243–310 | MR | Zbl

[55] E. Witten, “Algebraic geometry associated with matrix models of two-dimensional gravity”, Topological methods in modern mathematics (Stony Brook, NY, 1991), Publish or Perish, Houston, TX, 1993, 235–269 | MR | Zbl

[56] D. Zvonkine, Strebel differentials on stable curves and Kontsevich's proof of Witten's conjecture, 2004 (v1 – 2002), 45 pp., arXiv: math/0209071v2

[57] D. Zvonkine, “An introduction to moduli spaces of curves and their intersection theory”, Handbook of Teichmüller theory, v. III, IRMA Lect. Math. Theor. Phys., 17, Eur. Math. Soc., Zürich, 2012, 667–716 | DOI | MR | Zbl