Dynamical systems with non-integrable constraints, vakonomic mechanics, sub-Riemannian geometry, and non-holonomic mechanics
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 72 (2017) no. 5, pp. 783-840 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This is a survey of the main forms of equations of dynamical systems with non-integrable constraints, divided into two large groups. The first group contains systems arising in vakonomic mechanics and optimal control theory, with the equations of motion obtained from the variational principle, and the second contains systems in classical non-holonomic mechanics, when the constraints are ideal and therefore the D'Alembert–Lagrange principle holds. Bibliography: 134 titles.
Keywords: non-integrable constraints, vakonomic mechanics, optimal control theory, sub-Riemannian geometry, non-holonomic mechanics, invariant measure.
@article{RM_2017_72_5_a0,
     author = {A. V. Borisov and I. S. Mamaev and I. A. Bizyaev},
     title = {Dynamical systems with non-integrable constraints, vakonomic mechanics, {sub-Riemannian} geometry, and non-holonomic mechanics},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {783--840},
     year = {2017},
     volume = {72},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2017_72_5_a0/}
}
TY  - JOUR
AU  - A. V. Borisov
AU  - I. S. Mamaev
AU  - I. A. Bizyaev
TI  - Dynamical systems with non-integrable constraints, vakonomic mechanics, sub-Riemannian geometry, and non-holonomic mechanics
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2017
SP  - 783
EP  - 840
VL  - 72
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/RM_2017_72_5_a0/
LA  - en
ID  - RM_2017_72_5_a0
ER  - 
%0 Journal Article
%A A. V. Borisov
%A I. S. Mamaev
%A I. A. Bizyaev
%T Dynamical systems with non-integrable constraints, vakonomic mechanics, sub-Riemannian geometry, and non-holonomic mechanics
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2017
%P 783-840
%V 72
%N 5
%U http://geodesic.mathdoc.fr/item/RM_2017_72_5_a0/
%G en
%F RM_2017_72_5_a0
A. V. Borisov; I. S. Mamaev; I. A. Bizyaev. Dynamical systems with non-integrable constraints, vakonomic mechanics, sub-Riemannian geometry, and non-holonomic mechanics. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 72 (2017) no. 5, pp. 783-840. http://geodesic.mathdoc.fr/item/RM_2017_72_5_a0/

[1] A. A. Agrachev, Yu. L. Sachkov, Control theory from the geometric viewpoint, Encyclopaedia Math. Sci., 87, Control theory and optimization, II, Springer-Verlag, Berlin, 2004, xiv+412 pp. | DOI | MR | Zbl | Zbl

[2] Yu. Aminov, The geometry of vector fields, Gordon and Breach Publishers, Amsterdam, 2000, xiv+172 pp. | MR | MR | Zbl | Zbl

[3] V. I. Arnold, V. V. Kozlov, A. I. Neĭshtadt, Mathematical aspects of classical and celestial mechanics, Encyclopaedia Math. Sci., 3, Dynamical systems. III, 3rd ed., Springer-Verlag, Berlin, 2006, xiv+518 pp. | DOI | MR | Zbl

[4] A. V. Arutyunov, G. G. Magaril-Ilyaev, V. M. Tikhomirov, Printsip maksimuma Pontryagina. Dokazatelstvo i prilozheniya, Faktorial Press, M., 2006, 144 pp.

[5] H. Béghin, Étude théorique des compas gyrostatiques Anschütz et Sperry, Paris, 1922, 132 pp. | MR

[6] M. V. Berry, “Interpreting the anholonomy of coiled light”, Nature, 326 (1987), 277–278 | DOI

[7] J. Biggs, W. Holderbaum, “Optimal kinematic control of an autonomous underwater vehicle”, IEEE Trans. Automat. Control, 54:7 (2009), 1623–1626 | DOI | MR | Zbl

[8] I. A. Bizyaev, “Nonintegrability and obstructions to the Hamiltonianization of a nonholonomic Chaplygin top”, Dokl. Math., 90:2 (2014), 631–634 | DOI | DOI | MR | Zbl

[9] I. A. Bizyaev, “The inertial motion of a roller racer”, Regul. Chaotic Dyn., 22:3 (2017), 239–247 | DOI | MR

[10] I. A. Bizyaev, A. Bolsinov, A. Borisov, I. Mamaev, “Topology and bifurcations in nonholonomic mechanics”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 25:10 (2015), 1530028, 21 pp. | DOI | MR | Zbl

[11] I. A. Bizyaev, A. V. Borisov, A. O. Kazakov, “Dynamics of the Suslov problem in a gravitational field: reversal and strange attractors”, Regul. Chaotic Dyn., 20:5 (2015), 605–626 | DOI | MR | Zbl

[12] I. A. Bizyaev, A. V. Borisov, I. S. Mamaev, “The dynamics of nonholonomic systems consisting of a spherical shell with a moving rigid body inside”, Regul. Chaotic Dyn., 19:2 (2014), 198–213 | DOI | MR | Zbl

[13] I. A. Bizyaev, A. V. Borisov, I. S. Mamaev, “Hamiltonization of elementary nonholonomic systems”, Russ. J. Math. Phys., 22:4 (2015), 444–453 | DOI | MR | Zbl

[14] I. A. Bizyaev, A. V. Borisov, I. S. Mamaev, “The Hojman construction and Hamiltonization of nonholonomic systems”, SIGMA, 12 (2016), 012, 19 pp. | DOI | MR | Zbl

[15] I. A. Bizyaev, A. V. Borisov, I. S. Mamaev, “Dynamics of the Chaplygin sleigh on a cylinder”, Regul. Chaotic Dyn., 21:1 (2016), 136–146 | DOI | DOI | MR | Zbl

[16] I. A. Bizyaev, A. V. Borisov, I. S. Mamaev, “The Hess–Appelrot system and its nonholonomic analogs”, Proc. Steklov Inst. Math., 294 (2016), 252–275 | DOI | DOI | MR | Zbl

[17] I. A. Bizyaev, V. V. Kozlov, “Homogeneous systems with quadratic integrals, Lie–Poisson quasibrackets, and Kovalevskaya's method”, Sb. Math., 206:12 (2015), 1682–1706 | DOI | DOI | MR | Zbl

[18] A. M. Bloch, Nonholonomic mechanics and control, Interdiscip. Appl. Math., 24, Springer-Verlag, New York, 2003, xx+483 pp. | DOI | MR | Zbl

[19] S. Bolotin, “The problem of optimal control of a Chaplygin ball by internal rotors”, Regul. Chaotic Dyn., 17:6 (2012), 559–570 | DOI | MR | Zbl

[20] A. V. Bolsinov, A. V. Borisov, I. S. Mamaev, “Hamiltonization of non-holonomic systems in the neighborhood of invariant manifolds”, Regul. Chaotic Dyn., 16:5 (2011), 443–464 | DOI | MR | Zbl

[21] A. V. Bolsinov, A. V. Borisov, I. S. Mamaev, “Rolling of a ball without spinning on a plane: the absence of an invariant measure in a system with a complete set of integrals”, Regul. Chaotic Dyn., 17:6 (2012), 571–579 | DOI | MR | Zbl

[22] A. V. Bolsinov, A. V. Borisov, I. S. Mamaev, “Geometrisation of Chaplygin's reducing multiplier theorem”, Nonlinearity, 28:7 (2015), 2307–2318 | DOI | MR | Zbl

[23] B. Bonnard, L. Faubourg, E. Trélat, Mécanique céleste et contrôle des véhicules spatiaux [Celestial mechanics and the control of space vehicles], Math. Appl. (Berlin), 51, Springer-Verlag, Berlin, 2006, xiv+276 pp. | DOI | MR | Zbl

[24] A. B. Borisov, Yu. N. Fedorov, “On two modified integrable problems in dynamics”, Moscow Univ. Mech. Bull., 50:6 (1995), 16–18 | MR | Zbl

[25] A. V. Borisov, Yu. N. Fedorov, I. S. Mamaev, “Chaplygin ball over a fixed sphere: an explicit integration”, Regul. Chaotic Dyn., 13:6 (2008), 557–571 | DOI | MR | Zbl

[26] A. V. Borisov, A. Yu. Jalnine, S. P. Kuznetsov, I. R. Sataev, Yu. V. Sedova, “Dynamical phenomena occurring due to phase volume compression in nonholonomic model of the rattleback”, Regul. Chaotic Dyn., 17:6 (2012), 512–532 | DOI | MR | Zbl

[27] A. V. Borisov, A. O. Kazakov, E. N. Pivovarova, “Regular and chaotic dynamics in the rubber model of a Chaplygin top”, Regul. Chaotic Dyn., 21:7-8 (2016), 885–901 | DOI | MR | Zbl

[28] A. V. Borisov, A. O. Kazakov, I. R. Sataev, “The reversal and chaotic attractor in the nonholonomic model of Chaplygin's top”, Regul. Chaotic Dyn., 19:6 (2014), 718–733 | DOI | MR | Zbl

[29] A. V. Borisov, A. A. Kilin, I. S. Mamaev, “Hamiltonicity and integrability of the Suslov problem”, Regul. Chaotic Dyn., 16:1-2 (2011), 104–116 | DOI | MR | Zbl

[30] A. V. Borisov, A. A. Kilin, I. S. Mamaev, “Generalized Chaplygin's transformation and explicit integration of a system with a spherical support”, Regul. Chaotic Dyn., 17:2 (2012), 170–190 | DOI | MR | Zbl

[31] A. V. Borisov, A. A. Kilin, I. S. Mamaev, “How to control Chaplygin's sphere using rotors”, Regul. Chaotic Dyn., 17:3-4 (2012), 258–272 | DOI | MR | Zbl

[32] A. V. Borisov, A. A. Kilin, I. S. Mamaev, “How to control the Chaplygin ball using rotors. II”, Regul. Chaotic Dyn., 18:1-2 (2013), 144–158 | DOI | MR | Zbl

[33] A. V. Borisov, A. A. Kilin, I. S. Mamaev, “The problem of drift and recurrence for the rolling Chaplygin ball”, Regul. Chaotic Dyn., 18:6 (2013), 832–859 | DOI | MR | Zbl

[34] A. V. Borisov, A. A. Kilin, I. S. Mamaev, “On the Hadamard–Hamel problem and the dynamics of wheeled vehicles”, Regul. Chaotic Dyn., 20:6 (2015), 752–766 | DOI | MR | Zbl

[35] A. V. Borisov, A. A. Kilin, I. S. Mamaev, “Printsip Gamiltona i kachenie simmetrichnogo shara”, Dokl. RAN, 474:5 (2017), 558–562

[36] A. V. Borisov, V. V. Kozlov, I. S. Mamaev, “Asymptotic stability and associated problems of dynamics of falling rigid body”, Regul. Chaotic Dyn., 12:5 (2007), 531–565 | DOI | MR | Zbl

[37] A. V. Borisov, I. S. Mamaev, “Chaplygin's ball rolling problem is Hamiltonian”, Math. Notes, 70:5 (2001), 720–723 | DOI | DOI | MR | Zbl

[38] A. V. Borisov, I. S. Mamaev, “Obstacle to the reduction of nonholonomic systems to the Hamiltonian form”, Dokl. Phys., 47:12 (2002), 892–894 | DOI | MR

[39] A. V. Borisov, I. S. Mamaev, “Rolling of a rigid body on plane and sphere. Hierarchy of dynamics”, Regul. Chaotic Dyn., 7:2 (2002), 177–200 | DOI | MR | Zbl

[40] A. V. Borisov, I. S. Mamaev, “Strange attractors in rattleback dynamics”, Physics-Uspekhi, 46:4 (2003), 393–403 | DOI | DOI

[41] A. V. Borisov, I. S. Mamaev, “The nonexistence of an invariant measure for an inhomogeneous ellipsoid rolling on a plane”, Math. Notes, 77:6 (2005), 855–857 | DOI | DOI | MR | Zbl

[42] A. V. Borisov, I. S. Mamaev, Dinamika tverdogo tela. Gamiltonovy metody, integriruemost, khaos, 2-e izd., IKI, M.–Izhevsk, 2005, 576 pp. | MR | Zbl

[43] A. V. Borisov, I. S. Mamaev, “On the motion of a heavy rigid body in an ideal fluid with circulation”, Chaos, 16:1 (2006), 013118, 7 pp. | DOI | MR | Zbl

[44] A. V. Borisov, I. S. Mamaev, “Isomorphism and Hamilton representation of some nonholonomic systems”, Sib. Math. J., 48:1 (2007), 26–36 | DOI | MR | Zbl

[45] A. V. Borisov, I. S. Mamaev, “Conservation laws, hierarchy of dynamics and explicit integration of nonholonomic systems”, Regul. Chaotic Dyn., 13:5 (2008), 443–490 | DOI | MR | Zbl

[46] A. V. Borisov, I. S. Mamaev, “The dynamics of a Chaplygin sleigh”, J. Appl. Math. Mech., 73:2 (2009), 156–161 | DOI | MR | Zbl

[47] A. V. Borisov, I. S. Mamaev, “Topological analysis of an integrable system related to the rolling of a ball on a sphere”, Regul. Chaotic Dyn., 18:4 (2013), 356–371 | DOI | MR | Zbl

[48] A. V. Borisov, I. S. Mamaev, “Equations of motion of non-holonomic systems”, Russian Math. Surveys, 70:6 (2015), 1167–1169 | DOI | DOI | MR | Zbl

[49] A. V. Borisov, I. S. Mamaev, “Symmetries and reduction in nonholonomic mechanics”, Regul. Chaotic Dyn., 20:5 (2015), 553–604 | DOI | MR | Zbl

[50] A. V. Borisov, I. S. Mamaev, “Adiabatic invariants, diffusion and acceleration in rigid body dynamics”, Regul. Chaotic Dyn., 21:2 (2016), 232–248 | DOI | MR | Zbl

[51] A. V. Borisov, I. S. Mamaev, I. A. Bizyaev, “The hierarchy of dynamics of a rigid body rolling without slipping and spinning on a plane and a sphere”, Regul. Chaotic Dyn., 18:3 (2013), 277–328 | DOI | MR | Zbl

[52] A. V. Borisov, I. S. Mamaev, I. A. Bizyaev, “The Jacobi integral in nonholonomic mechanics”, Regul. Chaotic Dyn., 20:3 (2015), 383–400 | DOI | MR | Zbl

[53] A. V. Borisov, I. S. Mamaev, I. A. Bizyaev, “Historical and critical review of the development of nonholonomic mechanics: the classical period”, Regul. Chaotic Dyn., 21:4 (2016), 455–476 | DOI | MR | Zbl

[54] A. V. Borisov, A. A. Kilin, I. S. Mamaev, “Rolling of a ball on a surface. New integrals and hierarchy of dynamics”, Regul. Chaotic Dyn., 7:2 (2002), 201–219 | DOI | MR | Zbl

[55] A. V. Borisov, I. S. Mamaev, A. A. Kilin, I. A. Bizyaev, “Qualitative analysis of the dynamics of a wheeled vehicle”, Regul. Chaotic Dyn., 20:6 (2015), 739–751 | DOI | MR | Zbl

[56] A. V. Borisov, I. S. Mamaev, V. G. Marikhin, “Explicit integration of one problem in nonholonomic mechanics”, Dokl. Phys., 53:10 (2008), 525–528 | DOI | MR | Zbl

[57] A. V. Borisov, E. V. Vetchanin, A. A. Kilin, “Upravlenie dvizheniem trekhosnogo ellipsoida v zhidkosti s pomoschyu rotorov”, Matem. zametki, 102:4 (2017), 503–513

[58] O. Bottema, “On the small vibrations of non-holonomic systems”, Nederl. Akad. Wetensch., Proc., 52:8 (1949), 848–850 | MR | Zbl

[59] A. Bravo-Doddoli, L. C. García-Naranjo, “The dynamics of an articulated $n$-trailer vehicle”, Regul. Chaotic Dyn., 20:5 (2015), 497–517 | DOI | MR | Zbl

[60] C. Carathéodory, “Der Schlitten”, Z. Angew. Math. Mech., 13:2 (1933), 71–76 | DOI | Zbl

[61] S. A. Chaplygin, “O dvizhenii tyazhelogo tela vrascheniya na gorizontalnoi ploskosti”, Tr. otd. fiz. nauk Mosk. ob-va lyubitelei estestvoznaniya, antropologii i etnografii, 9:1 (1897), 10–16 ; РЎ. Рђ. Чаплыгин, СобраниРμ сочинРμРЅРёРNo, С‚. 1, РћР“Р�Р—, Рњ.–Р›., 1948, 51–57; S. A. Chaplygin, “On a motion of a heavy body of revolution on a horizontal plane”, Regul. Chaotic Dyn., 7:2 (2002), 119–130 | Zbl | DOI | MR | Zbl

[62] S. A. Chaplygin, “O katanii shara po gorizontalnoi ploskosti”, Matem. sb., 24 (1903), 139–168 ; РЎ. Рђ. Чаплыгин, СобраниРμ сочинРμРЅРёРNo, С‚. 1, РћР“Р�Р—, Рњ.–Р›., 1948, 76–101; S. A. Chaplygin, “On a ball's rolling on a horizontal plane”, Regul. Chaotic Dyn., 7:2 (2002), 131–148 | Zbl | DOI | MR | Zbl

[63] S. A. Chaplygin, “K teorii dvizheniya negolonomnykh sistem. Teorema o privodyaschem mnozhitele”, Matem. sb., 28:2 (1912), 303–314 ; РЎ. Рђ. Чаплыгин, СобраниРμ сочинРμРЅРёРNo, С‚. 1, РћР“Р�Р—, Рњ.–Р›., 1948, 15–25; S. A. Chaplygin, “On the theory of motion of nonholonomic systems. The reducing-multiplier theorem”, Regul. Chaotic Dyn., 13:4 (2008), 369–376 | Zbl | DOI | MR | Zbl

[64] N. G. Chetaev, “Ob uravneniyakh Puankare”, PMM, 5:2 (1941), 253–262 | MR | Zbl

[65] M. V. Deryabin, V. V. Kozlov, “Ob effekte “vynyrivaniya” tyazhelogo tverdogo tela v zhidkosti”, Izv. RAN. Mekh. tv. tela, 1 (2002), 68–74

[66] J. J. Duistermaat, “Chaplygin's sphere”, 2004, 101 pp., arXiv: ; A chapter in: R. Cushman, J. J. Duistermaat, J. Sniatycki, Chaplygin and the geometry of nonholonomically constrained systems (in preparation) math/0409019

[67] K. Ehlers, J. Koiller, R. Montgomery, P. M. Rios, “Nonholonomic systems via moving frames: Cartan equivalence and Chaplygin Hamiltonization”, The breadth of symplectic and Poisson geometry, Progr. Math., 232, Birkhäuser Boston, Boston, MA, 2005, 75–120 | DOI | MR | Zbl

[68] Yu. N. Fedorov, “Ob integrirovanii obobschennoi zadachi o kachenii shara Chaplygina”, Geometriya, differentsialnye uravneniya i mekhanika (Moskva, 1985), MGU, M., 1986, 151–155 | MR | Zbl

[69] Yu. N. Fedorov, “Motion of a rigid body in a spherical suspension”, Moscow Univ. Mech. Bull., 43:5 (1988), 54–58 | MR | Zbl

[70] Yu. N. Fedorov, “Dinamicheskie sistemy s invariantnoi meroi na rimanovykh simmetrichnykh parakh $(\operatorname{GL}(N),\operatorname{SO}(N))$”, Regul. Chaotic Dyn., 1:1 (1996), 38–44 | MR | Zbl

[71] Yu. N. Fedorov, B. Jovanović, “Quasi-Chaplygin systems and nonholonomic rigid body dynamics”, Lett. Math. Phys., 76:2-3 (2006), 215–230 | DOI | MR | Zbl

[72] Yu. N. Fedorov, V. V. Kozlov, “Various aspects of $n$-dimensional rigid body dynamics”, Dynamical systems in classical mechanics, Amer. Math. Soc. Transl. Ser. 2, 168, Adv. Math. Sci., 25, 1995, 141–171 | DOI | MR | Zbl

[73] S. Ferraro, F. Jiménez, D. M. de Diego, “New developments on the geometric nonholonomic integrator”, Nonlinearity, 28:4 (2015), 871–900 | DOI | MR | Zbl

[74] A. S. Gonchenko, S. V. Gonchenko, A. O. Kazakov, “Richness of chaotic dynamics in nonholonomic models of a Celtic stone”, Regul. Chaotic Dyn., 18:5 (2013), 521–538 | DOI | MR | Zbl

[75] Ph. A. Griffiths, Exterior differential systems and the calculus of variations, Progr. Math., 25, Birkhäuser, Boston, MA, 1983, ix+335 pp. | MR | MR | Zbl

[76] G. Hamel, “Die Lagrange–Eulerschen Gleichungen der Mechanik”, Z. Math. u. Phys., 50 (1904), 1–57 | Zbl

[77] G. Hamel, “Das Hamiltonsche Prinzip bei nichtholonomen Systemen”, Math. Ann., 111:1 (1935), 94–97 | DOI | MR | Zbl

[78] G. Hamel, Theoretische Mechanik. Eine einheitliche Einführung in die gesamte Mechanik, Grundlehren Math. Wiss., 57, Corrected reprint of the 1949 edition, Springer-Verlag, Berlin–New York, 1978, xv+796 pp. | DOI | MR | Zbl

[79] A. P. Ivanov, “On final motions of a Chaplygin ball on a rough plane”, Regul. Chaotic Dyn., 21:7-8 (2016), 804–810 | DOI | MR | Zbl

[80] V. Jurdjevic, “The geometry of the plate-ball problem”, Arch. Ration. Mech. Anal., 124:4 (1993), 305–328 | DOI | MR | Zbl

[81] A. V. Karapetyan, “On realizing nonholonomic constraints by viscous friction forces and Celtic stones stability”, J. Appl. Math. Mech., 45 (1982), 30–36 | DOI | MR | Zbl

[82] A. V. Karapetyan, Ustoichivost statsionarnykh dvizhenii, Editorial URSS, M., 1998, 165 pp.

[83] Yu. L. Karavaev, A. A. Kilin, “The dynamics and control of a spherical robot with an internal omniwheel platform”, Regul. Chaotic Dyn., 20:2 (2015), 134–152 | DOI | MR | Zbl

[84] P. V. Kharlamov, “A critique of some mathematical models of mechanical systems with differential constraints”, J. Appl. Math. Mech., 56:4 (1992), 584–594 | DOI | MR | Zbl

[85] A. A. Kilin, “The dynamics of Chaplygin ball: the qualitative and computer analysis”, Regul. Chaotic Dyn., 6:3 (2001), 291–306 | DOI | MR | Zbl

[86] J. D. G. Kooijman, J. P. Meijaard, J. M. Papadopoulos, A. Ruina, A. L. Schwab, “A bicycle can be self-stable without gyroscopic or caster effects”, Science, 332:6027 (2011), 339–342 | DOI | MR | Zbl

[87] S. Koshkin, V. Jovanovic, “Realization of non-holonomic constraints and singular perturbation theory for plane dumbbells”, J. Engrg. Math., 1–19 (to appear) , first online 2017

[88] V. V. Kozlov, “Dynamics of systems with nonintegrable constraints. I”, Moscow Univ. Mech. Bull., 37:3-4 (1982), 27–34 | MR | Zbl

[89] V. V. Kozlov, “Dynamics of systems with nonintegrable constraints. II”, Moscow Univ. Mech. Bull., 37:3-4 (1982), 74–80 | MR | Zbl

[90] V. V. Kozlov, “Dynamics of systems with nonintegrable constraints. III”, Moscow Univ. Mech. Bull., 38:3 (1983), 40–51 | MR | Zbl

[91] V. V. Kozlov, “Realization of nonintegrable constraints in classical mechanics”, Soviet Phys. Dokl., 28 (1983), 735–737 | MR | Zbl

[92] V. V. Kozlov, “On the integration theory of equations of nonholonomic mechanics”, Adv. Mech. USSR, 8:3 (1985), 85–107 ; Regul. Chaotic Dyn., 7:2 (2002), 191–176 | DOI | MR

[93] V. V. Kozlov, “The problem of realizing constraints in dynamics”, J. Appl. Math. Mech., 56:4 (1992), 594–600 | DOI | MR | Zbl

[94] V. V. Kozlov, “Several problems on dynamical systems and mechanics”, Nonlinearity, 21:9 (2008), T149–T155 | DOI | MR | Zbl

[95] V. V. Kozlov, “The Euler–Jacobi–Lie integrability theorem”, Regul. Chaotic Dyn., 18:4 (2013), 329–343 | DOI | MR | Zbl

[96] V. V. Kozlov, “The dynamics of systems with servoconstraints. I”, Regul. Chaotic Dyn., 20:3 (2015), 205–224 | DOI | MR | Zbl

[97] V. V. Kozlov, “The dynamics of systems with servoconstraints. II”, Regul. Chaotic Dyn., 20:4 (2015), 401–427 | DOI | MR | Zbl

[98] V. V. Kozlov, “The phenomenon of reversal in the Euler–Poincaré–Suslov nonholonomic systems”, J. Dyn. Control Syst., 22:4 (2016), 713–724 | DOI | MR | Zbl

[99] V. V. Kozlov, “Invariant measures of smooth dynamical systems, generalized functions and summation methods”, Izv. Math., 80:2 (2016), 342–358 | DOI | DOI | MR | Zbl

[100] V. V. Kozlov, A. A. Afonin, “Zadacha o padenii diska, dvizhuschegosya po gorizontalnoi ploskosti”, Izv. RAN. Mekh. tv. tela, 1 (1997), 7–13

[101] V. V. Kozlov, A. I. Neishtadt, “On the realization of holonomic constraints”, J. Appl. Math. Mech., 54:5 (1990), 705–708 | DOI | MR | Zbl

[102] V. V. Kozlov, V. A. Yaroshchuk, “On the invariant measures of Euler–Poincaré equations on unimodular groups”, Moscow Univ. Mech. Bull., 48:2 (1993), 45–50 | MR | Zbl

[103] J.-P. Laumond, P. E. Jacobs, M. Taix, R. M. Murray, “A motion planner for nonholonomic mobile robots”, IEEE Trans. on Robotics and Automation, 10:5 (1994), 577–593 | DOI

[104] G. B. Malykin, Yu. I. Neimark, “Negolonomnaya svyaz sostoyaniya polyarizatsii sveta i ugla skrutki odnomodovogo svetovoda s lineinym dvulucheprelomleniem”, Zhurnal tekhnicheskoi fiziki, 68:11 (1998), 22–25

[105] A. P. Markeev, “Ob integriruemosti zadachi o kachenii shara s mnogosvyaznoi polostyu, zapolnennoi idealnoi zhidkostyu”, Izv. AN SSSR. Mekh. tv. tela, 21:1 (1986), 64–65

[106] F. Mei, “Nonholonomic mechanics”, Appl. Mech. Rev., 53:11 (2000), 283–305 | DOI

[107] J. P. Meijaard, J. M. Papadopoulos, A. Ruina, A. L. Schwab, “Linearized dynamics equations for the balance and steer of a bicycle: a benchmark and review”, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 463:2084 (2007), 1955–1982 | DOI | MR | Zbl

[108] R. Montgomery, A tour of subriemannian geometries, their geodesics and applications, Math. Surveys Monogr., 91, Reprint of 2002 ed., Amer. Math. Soc., Providence, RI, 2006, xx+259 pp. | MR | Zbl

[109] A. Yu. Moskvin, “Shar Chaplygina s girostatom: osobye resheniya”, Nelineinaya dinam., 5:3 (2009), 345–356

[110] Ju. I. Neimark, N. A. Fufaev, Dynamics of nonholonomic systems, Transl. Math. Monogr., 33, Amer. Math. Soc., Providence, RI, 1967, ix+518 pp. | MR | Zbl | Zbl

[111] S. P. Novikov, “The Hamiltonian formalism and a many-valued analogue of Morse theory”, Russian Math. Surveys, 37:5 (1982), 1–56 | DOI | MR | Zbl

[112] P. Painlevé, Leçons sur le frottement, Hermann, Paris, 1895, viii+111 pp. | Zbl

[113] J. G. Papastavridis, “A panoramic overview of the principles and equations of motion of advanced engineering dynamics”, Appl. Mech. Rev., 51:4 (1998), 239–265 | DOI

[114] H. Poincaré, “Sur une forme nouvelle des équations de la mécanique”, C. R. Acad. Sci. Paris, 132 (1901), 369–371 | Zbl

[115] S. Rauch-Wojciechowski, M. Przybylska, “Understanding reversals of a rattleback”, Regul. Chaotic Dyn., 22:4 (2017), 368–385 | DOI | MR

[116] H. Rubin, P. Ungar, “Motion under a strong constraining force”, Comm. Pure Appl. Math., 10:1 (1957), 65–87 | DOI | MR | Zbl

[117] M. Svinin, A. Morinaga, M. Yamamoto, “On the dynamic model and motion planning for a spherical rolling robot actuated by orthogonal internal rotors”, Regul. Chaotic Dyn., 18:1-2 (2013), 126–143 | DOI | MR | Zbl

[118] J. L. Synge, “Geodesics in non-holonomic geometry”, Math. Ann., 99:1 (1928), 738–751 | DOI | MR | Zbl

[119] Ya. V. Tatarinov, “Consequences of a non-integrable perturbation of the integrable constraints: model problems of low dimensionality”, J. Appl. Math. Mech., 51:5 (1987), 579–586 | DOI | MR | Zbl

[120] Ya. V. Tatarinov, “Razdelyayuschie peremennye i novye topologicheskie yavleniya v golonomnykh i negolonomnykh sistemakh”, Tr. sem. po vektorn. i tenzorn. analizu, 23, MGU, M., 1988, 160–174 | MR | Zbl

[121] A. V. Tsyganov, “O puassonovykh strukturakh, voznikayuschikh pri rassmotrenii shara Chaplygina i ego obobschenii”, Nelineinaya dinam., 8:2 (2012), 345–353

[122] F. E. Udwadia, R. E. Kalaba, “Equations of motion for mechanical systems”, J. of Aerospace Engineering, 9:3 (1996), 64–69 | DOI

[123] F. E. Udwadia, R. E. Kalaba, “What is the general form of the explicit equations of motion for constrained mechanical systems?”, Trans. ASME J. Appl. Mech., 69:3 (2002), 335–339 | DOI | MR | Zbl

[124] V. Vagner, “Geometricheskaya interpretatsiya dvizheniya negolonomnykh dinamicheskikh sistem”, Tr. sem. po vektorn. i tenzorn. analizu, 5, MGU, M., 1941, 301–327 | MR | Zbl

[125] A. J. van der Schaft, B. M. Maschke, “On the Hamiltonian formulation of nonholonomic mechanical systems”, Rep. Math. Phys., 34:2 (1994), 225–233 | DOI | MR | Zbl

[126] A. M. Vershik, L. D. Faddeev, “Differential geometry and Lagrangian mechanics with constraints”, Soviet Phys. Dokl., 17:34–36 (1972) | Zbl

[127] A. M. Vershik, V. Ya. Gershkovich, “Nonholonomic dynamical systems, geometry of distributions and variational problems”, Dynamical systems VII, Encyclopaedia Math. Sci., 16, Springer, Berlin, 1994, 1–81 | DOI | MR | Zbl

[128] A. P. Veselov, L. E. Veselova, “Integrable nonholonomic systems on Lie groups”, Math. Notes, 44:5 (1988), 810–819 | DOI | MR | Zbl

[129] L. E. Veselova, “Novye sluchai integriruemosti uravnenii dvizheniya tverdogo tela pri nalichii negolonomnoi svyazi”, Geometriya, differentsialnye uravneniya i mekhanika (Moskva, 1985), eds. V. V. Kozlov, A. T. Fomenko, MGU, M., 1986, 64–68 | MR | Zbl

[130] E. V. Vetchanin, A. A. Kilin, “Free and controlled motion of a body with a moving internal mass though a fluid in the presence of circulation around the body”, Dokl. Phys., 61:1 (2016), 32–36 | DOI | MR

[131] E. V. Vetchanin, A. A. Kilin, I. S. Mamaev, “Control of the motion of a helical body in a fluid using rotors”, Regul. Chaotic Dyn., 21:7-8 (2016), 874–884 | DOI | MR | Zbl

[132] V.A. Yaroshchuk, “Some new cases of the existence of integral invariant in the problem on a rigid body rolling over a stationary surface without slip”, Moscow Univ. Mech. Bull., 47:6 (1992), 1–4 | MR | Zbl

[133] V. A. Yaroschuk, “Integralnyi invariant v zadache o kachenii ellipsoida so spetsialnymi raspredeleniyami mass po nepodvizhnoi poverkhnosti bez proskalzyvaniya”, Izv. RAN. Mekh. tv. tela, 1995, no. 2, 54–57

[134] N. T. Zung, N. V. Minh, “Geometry of nondegenerate ${\mathbb R}^n$-actions on $n$-manifolds”, J. Math. Soc. Japan, 66:3 (2014), 839–894 | DOI | MR | Zbl