@article{RM_2017_72_5_a0,
author = {A. V. Borisov and I. S. Mamaev and I. A. Bizyaev},
title = {Dynamical systems with non-integrable constraints, vakonomic mechanics, {sub-Riemannian} geometry, and non-holonomic mechanics},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {783--840},
year = {2017},
volume = {72},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2017_72_5_a0/}
}
TY - JOUR AU - A. V. Borisov AU - I. S. Mamaev AU - I. A. Bizyaev TI - Dynamical systems with non-integrable constraints, vakonomic mechanics, sub-Riemannian geometry, and non-holonomic mechanics JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2017 SP - 783 EP - 840 VL - 72 IS - 5 UR - http://geodesic.mathdoc.fr/item/RM_2017_72_5_a0/ LA - en ID - RM_2017_72_5_a0 ER -
%0 Journal Article %A A. V. Borisov %A I. S. Mamaev %A I. A. Bizyaev %T Dynamical systems with non-integrable constraints, vakonomic mechanics, sub-Riemannian geometry, and non-holonomic mechanics %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2017 %P 783-840 %V 72 %N 5 %U http://geodesic.mathdoc.fr/item/RM_2017_72_5_a0/ %G en %F RM_2017_72_5_a0
A. V. Borisov; I. S. Mamaev; I. A. Bizyaev. Dynamical systems with non-integrable constraints, vakonomic mechanics, sub-Riemannian geometry, and non-holonomic mechanics. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 72 (2017) no. 5, pp. 783-840. http://geodesic.mathdoc.fr/item/RM_2017_72_5_a0/
[1] A. A. Agrachev, Yu. L. Sachkov, Control theory from the geometric viewpoint, Encyclopaedia Math. Sci., 87, Control theory and optimization, II, Springer-Verlag, Berlin, 2004, xiv+412 pp. | DOI | MR | Zbl | Zbl
[2] Yu. Aminov, The geometry of vector fields, Gordon and Breach Publishers, Amsterdam, 2000, xiv+172 pp. | MR | MR | Zbl | Zbl
[3] V. I. Arnold, V. V. Kozlov, A. I. Neĭshtadt, Mathematical aspects of classical and celestial mechanics, Encyclopaedia Math. Sci., 3, Dynamical systems. III, 3rd ed., Springer-Verlag, Berlin, 2006, xiv+518 pp. | DOI | MR | Zbl
[4] A. V. Arutyunov, G. G. Magaril-Ilyaev, V. M. Tikhomirov, Printsip maksimuma Pontryagina. Dokazatelstvo i prilozheniya, Faktorial Press, M., 2006, 144 pp.
[5] H. Béghin, Étude théorique des compas gyrostatiques Anschütz et Sperry, Paris, 1922, 132 pp. | MR
[6] M. V. Berry, “Interpreting the anholonomy of coiled light”, Nature, 326 (1987), 277–278 | DOI
[7] J. Biggs, W. Holderbaum, “Optimal kinematic control of an autonomous underwater vehicle”, IEEE Trans. Automat. Control, 54:7 (2009), 1623–1626 | DOI | MR | Zbl
[8] I. A. Bizyaev, “Nonintegrability and obstructions to the Hamiltonianization of a nonholonomic Chaplygin top”, Dokl. Math., 90:2 (2014), 631–634 | DOI | DOI | MR | Zbl
[9] I. A. Bizyaev, “The inertial motion of a roller racer”, Regul. Chaotic Dyn., 22:3 (2017), 239–247 | DOI | MR
[10] I. A. Bizyaev, A. Bolsinov, A. Borisov, I. Mamaev, “Topology and bifurcations in nonholonomic mechanics”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 25:10 (2015), 1530028, 21 pp. | DOI | MR | Zbl
[11] I. A. Bizyaev, A. V. Borisov, A. O. Kazakov, “Dynamics of the Suslov problem in a gravitational field: reversal and strange attractors”, Regul. Chaotic Dyn., 20:5 (2015), 605–626 | DOI | MR | Zbl
[12] I. A. Bizyaev, A. V. Borisov, I. S. Mamaev, “The dynamics of nonholonomic systems consisting of a spherical shell with a moving rigid body inside”, Regul. Chaotic Dyn., 19:2 (2014), 198–213 | DOI | MR | Zbl
[13] I. A. Bizyaev, A. V. Borisov, I. S. Mamaev, “Hamiltonization of elementary nonholonomic systems”, Russ. J. Math. Phys., 22:4 (2015), 444–453 | DOI | MR | Zbl
[14] I. A. Bizyaev, A. V. Borisov, I. S. Mamaev, “The Hojman construction and Hamiltonization of nonholonomic systems”, SIGMA, 12 (2016), 012, 19 pp. | DOI | MR | Zbl
[15] I. A. Bizyaev, A. V. Borisov, I. S. Mamaev, “Dynamics of the Chaplygin sleigh on a cylinder”, Regul. Chaotic Dyn., 21:1 (2016), 136–146 | DOI | DOI | MR | Zbl
[16] I. A. Bizyaev, A. V. Borisov, I. S. Mamaev, “The Hess–Appelrot system and its nonholonomic analogs”, Proc. Steklov Inst. Math., 294 (2016), 252–275 | DOI | DOI | MR | Zbl
[17] I. A. Bizyaev, V. V. Kozlov, “Homogeneous systems with quadratic integrals, Lie–Poisson quasibrackets, and Kovalevskaya's method”, Sb. Math., 206:12 (2015), 1682–1706 | DOI | DOI | MR | Zbl
[18] A. M. Bloch, Nonholonomic mechanics and control, Interdiscip. Appl. Math., 24, Springer-Verlag, New York, 2003, xx+483 pp. | DOI | MR | Zbl
[19] S. Bolotin, “The problem of optimal control of a Chaplygin ball by internal rotors”, Regul. Chaotic Dyn., 17:6 (2012), 559–570 | DOI | MR | Zbl
[20] A. V. Bolsinov, A. V. Borisov, I. S. Mamaev, “Hamiltonization of non-holonomic systems in the neighborhood of invariant manifolds”, Regul. Chaotic Dyn., 16:5 (2011), 443–464 | DOI | MR | Zbl
[21] A. V. Bolsinov, A. V. Borisov, I. S. Mamaev, “Rolling of a ball without spinning on a plane: the absence of an invariant measure in a system with a complete set of integrals”, Regul. Chaotic Dyn., 17:6 (2012), 571–579 | DOI | MR | Zbl
[22] A. V. Bolsinov, A. V. Borisov, I. S. Mamaev, “Geometrisation of Chaplygin's reducing multiplier theorem”, Nonlinearity, 28:7 (2015), 2307–2318 | DOI | MR | Zbl
[23] B. Bonnard, L. Faubourg, E. Trélat, Mécanique céleste et contrôle des véhicules spatiaux [Celestial mechanics and the control of space vehicles], Math. Appl. (Berlin), 51, Springer-Verlag, Berlin, 2006, xiv+276 pp. | DOI | MR | Zbl
[24] A. B. Borisov, Yu. N. Fedorov, “On two modified integrable problems in dynamics”, Moscow Univ. Mech. Bull., 50:6 (1995), 16–18 | MR | Zbl
[25] A. V. Borisov, Yu. N. Fedorov, I. S. Mamaev, “Chaplygin ball over a fixed sphere: an explicit integration”, Regul. Chaotic Dyn., 13:6 (2008), 557–571 | DOI | MR | Zbl
[26] A. V. Borisov, A. Yu. Jalnine, S. P. Kuznetsov, I. R. Sataev, Yu. V. Sedova, “Dynamical phenomena occurring due to phase volume compression in nonholonomic model of the rattleback”, Regul. Chaotic Dyn., 17:6 (2012), 512–532 | DOI | MR | Zbl
[27] A. V. Borisov, A. O. Kazakov, E. N. Pivovarova, “Regular and chaotic dynamics in the rubber model of a Chaplygin top”, Regul. Chaotic Dyn., 21:7-8 (2016), 885–901 | DOI | MR | Zbl
[28] A. V. Borisov, A. O. Kazakov, I. R. Sataev, “The reversal and chaotic attractor in the nonholonomic model of Chaplygin's top”, Regul. Chaotic Dyn., 19:6 (2014), 718–733 | DOI | MR | Zbl
[29] A. V. Borisov, A. A. Kilin, I. S. Mamaev, “Hamiltonicity and integrability of the Suslov problem”, Regul. Chaotic Dyn., 16:1-2 (2011), 104–116 | DOI | MR | Zbl
[30] A. V. Borisov, A. A. Kilin, I. S. Mamaev, “Generalized Chaplygin's transformation and explicit integration of a system with a spherical support”, Regul. Chaotic Dyn., 17:2 (2012), 170–190 | DOI | MR | Zbl
[31] A. V. Borisov, A. A. Kilin, I. S. Mamaev, “How to control Chaplygin's sphere using rotors”, Regul. Chaotic Dyn., 17:3-4 (2012), 258–272 | DOI | MR | Zbl
[32] A. V. Borisov, A. A. Kilin, I. S. Mamaev, “How to control the Chaplygin ball using rotors. II”, Regul. Chaotic Dyn., 18:1-2 (2013), 144–158 | DOI | MR | Zbl
[33] A. V. Borisov, A. A. Kilin, I. S. Mamaev, “The problem of drift and recurrence for the rolling Chaplygin ball”, Regul. Chaotic Dyn., 18:6 (2013), 832–859 | DOI | MR | Zbl
[34] A. V. Borisov, A. A. Kilin, I. S. Mamaev, “On the Hadamard–Hamel problem and the dynamics of wheeled vehicles”, Regul. Chaotic Dyn., 20:6 (2015), 752–766 | DOI | MR | Zbl
[35] A. V. Borisov, A. A. Kilin, I. S. Mamaev, “Printsip Gamiltona i kachenie simmetrichnogo shara”, Dokl. RAN, 474:5 (2017), 558–562
[36] A. V. Borisov, V. V. Kozlov, I. S. Mamaev, “Asymptotic stability and associated problems of dynamics of falling rigid body”, Regul. Chaotic Dyn., 12:5 (2007), 531–565 | DOI | MR | Zbl
[37] A. V. Borisov, I. S. Mamaev, “Chaplygin's ball rolling problem is Hamiltonian”, Math. Notes, 70:5 (2001), 720–723 | DOI | DOI | MR | Zbl
[38] A. V. Borisov, I. S. Mamaev, “Obstacle to the reduction of nonholonomic systems to the Hamiltonian form”, Dokl. Phys., 47:12 (2002), 892–894 | DOI | MR
[39] A. V. Borisov, I. S. Mamaev, “Rolling of a rigid body on plane and sphere. Hierarchy of dynamics”, Regul. Chaotic Dyn., 7:2 (2002), 177–200 | DOI | MR | Zbl
[40] A. V. Borisov, I. S. Mamaev, “Strange attractors in rattleback dynamics”, Physics-Uspekhi, 46:4 (2003), 393–403 | DOI | DOI
[41] A. V. Borisov, I. S. Mamaev, “The nonexistence of an invariant measure for an inhomogeneous ellipsoid rolling on a plane”, Math. Notes, 77:6 (2005), 855–857 | DOI | DOI | MR | Zbl
[42] A. V. Borisov, I. S. Mamaev, Dinamika tverdogo tela. Gamiltonovy metody, integriruemost, khaos, 2-e izd., IKI, M.–Izhevsk, 2005, 576 pp. | MR | Zbl
[43] A. V. Borisov, I. S. Mamaev, “On the motion of a heavy rigid body in an ideal fluid with circulation”, Chaos, 16:1 (2006), 013118, 7 pp. | DOI | MR | Zbl
[44] A. V. Borisov, I. S. Mamaev, “Isomorphism and Hamilton representation of some nonholonomic systems”, Sib. Math. J., 48:1 (2007), 26–36 | DOI | MR | Zbl
[45] A. V. Borisov, I. S. Mamaev, “Conservation laws, hierarchy of dynamics and explicit integration of nonholonomic systems”, Regul. Chaotic Dyn., 13:5 (2008), 443–490 | DOI | MR | Zbl
[46] A. V. Borisov, I. S. Mamaev, “The dynamics of a Chaplygin sleigh”, J. Appl. Math. Mech., 73:2 (2009), 156–161 | DOI | MR | Zbl
[47] A. V. Borisov, I. S. Mamaev, “Topological analysis of an integrable system related to the rolling of a ball on a sphere”, Regul. Chaotic Dyn., 18:4 (2013), 356–371 | DOI | MR | Zbl
[48] A. V. Borisov, I. S. Mamaev, “Equations of motion of non-holonomic systems”, Russian Math. Surveys, 70:6 (2015), 1167–1169 | DOI | DOI | MR | Zbl
[49] A. V. Borisov, I. S. Mamaev, “Symmetries and reduction in nonholonomic mechanics”, Regul. Chaotic Dyn., 20:5 (2015), 553–604 | DOI | MR | Zbl
[50] A. V. Borisov, I. S. Mamaev, “Adiabatic invariants, diffusion and acceleration in rigid body dynamics”, Regul. Chaotic Dyn., 21:2 (2016), 232–248 | DOI | MR | Zbl
[51] A. V. Borisov, I. S. Mamaev, I. A. Bizyaev, “The hierarchy of dynamics of a rigid body rolling without slipping and spinning on a plane and a sphere”, Regul. Chaotic Dyn., 18:3 (2013), 277–328 | DOI | MR | Zbl
[52] A. V. Borisov, I. S. Mamaev, I. A. Bizyaev, “The Jacobi integral in nonholonomic mechanics”, Regul. Chaotic Dyn., 20:3 (2015), 383–400 | DOI | MR | Zbl
[53] A. V. Borisov, I. S. Mamaev, I. A. Bizyaev, “Historical and critical review of the development of nonholonomic mechanics: the classical period”, Regul. Chaotic Dyn., 21:4 (2016), 455–476 | DOI | MR | Zbl
[54] A. V. Borisov, A. A. Kilin, I. S. Mamaev, “Rolling of a ball on a surface. New integrals and hierarchy of dynamics”, Regul. Chaotic Dyn., 7:2 (2002), 201–219 | DOI | MR | Zbl
[55] A. V. Borisov, I. S. Mamaev, A. A. Kilin, I. A. Bizyaev, “Qualitative analysis of the dynamics of a wheeled vehicle”, Regul. Chaotic Dyn., 20:6 (2015), 739–751 | DOI | MR | Zbl
[56] A. V. Borisov, I. S. Mamaev, V. G. Marikhin, “Explicit integration of one problem in nonholonomic mechanics”, Dokl. Phys., 53:10 (2008), 525–528 | DOI | MR | Zbl
[57] A. V. Borisov, E. V. Vetchanin, A. A. Kilin, “Upravlenie dvizheniem trekhosnogo ellipsoida v zhidkosti s pomoschyu rotorov”, Matem. zametki, 102:4 (2017), 503–513
[58] O. Bottema, “On the small vibrations of non-holonomic systems”, Nederl. Akad. Wetensch., Proc., 52:8 (1949), 848–850 | MR | Zbl
[59] A. Bravo-Doddoli, L. C. García-Naranjo, “The dynamics of an articulated $n$-trailer vehicle”, Regul. Chaotic Dyn., 20:5 (2015), 497–517 | DOI | MR | Zbl
[60] C. Carathéodory, “Der Schlitten”, Z. Angew. Math. Mech., 13:2 (1933), 71–76 | DOI | Zbl
[61] S. A. Chaplygin, “O dvizhenii tyazhelogo tela vrascheniya na gorizontalnoi ploskosti”, Tr. otd. fiz. nauk Mosk. ob-va lyubitelei estestvoznaniya, antropologii i etnografii, 9:1 (1897), 10–16 ; РЎ. Рђ. Чаплыгин, СобраниРμ сочинРμРЅРёРNo, С‚. 1, РћР“Р�Р—, Рњ.–Р›., 1948, 51–57; S. A. Chaplygin, “On a motion of a heavy body of revolution on a horizontal plane”, Regul. Chaotic Dyn., 7:2 (2002), 119–130 | Zbl | DOI | MR | Zbl
[62] S. A. Chaplygin, “O katanii shara po gorizontalnoi ploskosti”, Matem. sb., 24 (1903), 139–168 ; РЎ. Рђ. Чаплыгин, СобраниРμ сочинРμРЅРёРNo, С‚. 1, РћР“Р�Р—, Рњ.–Р›., 1948, 76–101; S. A. Chaplygin, “On a ball's rolling on a horizontal plane”, Regul. Chaotic Dyn., 7:2 (2002), 131–148 | Zbl | DOI | MR | Zbl
[63] S. A. Chaplygin, “K teorii dvizheniya negolonomnykh sistem. Teorema o privodyaschem mnozhitele”, Matem. sb., 28:2 (1912), 303–314 ; РЎ. Рђ. Чаплыгин, СобраниРμ сочинРμРЅРёРNo, С‚. 1, РћР“Р�Р—, Рњ.–Р›., 1948, 15–25; S. A. Chaplygin, “On the theory of motion of nonholonomic systems. The reducing-multiplier theorem”, Regul. Chaotic Dyn., 13:4 (2008), 369–376 | Zbl | DOI | MR | Zbl
[64] N. G. Chetaev, “Ob uravneniyakh Puankare”, PMM, 5:2 (1941), 253–262 | MR | Zbl
[65] M. V. Deryabin, V. V. Kozlov, “Ob effekte “vynyrivaniya” tyazhelogo tverdogo tela v zhidkosti”, Izv. RAN. Mekh. tv. tela, 1 (2002), 68–74
[66] J. J. Duistermaat, “Chaplygin's sphere”, 2004, 101 pp., arXiv: ; A chapter in: R. Cushman, J. J. Duistermaat, J. Sniatycki, Chaplygin and the geometry of nonholonomically constrained systems (in preparation) math/0409019
[67] K. Ehlers, J. Koiller, R. Montgomery, P. M. Rios, “Nonholonomic systems via moving frames: Cartan equivalence and Chaplygin Hamiltonization”, The breadth of symplectic and Poisson geometry, Progr. Math., 232, Birkhäuser Boston, Boston, MA, 2005, 75–120 | DOI | MR | Zbl
[68] Yu. N. Fedorov, “Ob integrirovanii obobschennoi zadachi o kachenii shara Chaplygina”, Geometriya, differentsialnye uravneniya i mekhanika (Moskva, 1985), MGU, M., 1986, 151–155 | MR | Zbl
[69] Yu. N. Fedorov, “Motion of a rigid body in a spherical suspension”, Moscow Univ. Mech. Bull., 43:5 (1988), 54–58 | MR | Zbl
[70] Yu. N. Fedorov, “Dinamicheskie sistemy s invariantnoi meroi na rimanovykh simmetrichnykh parakh $(\operatorname{GL}(N),\operatorname{SO}(N))$”, Regul. Chaotic Dyn., 1:1 (1996), 38–44 | MR | Zbl
[71] Yu. N. Fedorov, B. Jovanović, “Quasi-Chaplygin systems and nonholonomic rigid body dynamics”, Lett. Math. Phys., 76:2-3 (2006), 215–230 | DOI | MR | Zbl
[72] Yu. N. Fedorov, V. V. Kozlov, “Various aspects of $n$-dimensional rigid body dynamics”, Dynamical systems in classical mechanics, Amer. Math. Soc. Transl. Ser. 2, 168, Adv. Math. Sci., 25, 1995, 141–171 | DOI | MR | Zbl
[73] S. Ferraro, F. Jiménez, D. M. de Diego, “New developments on the geometric nonholonomic integrator”, Nonlinearity, 28:4 (2015), 871–900 | DOI | MR | Zbl
[74] A. S. Gonchenko, S. V. Gonchenko, A. O. Kazakov, “Richness of chaotic dynamics in nonholonomic models of a Celtic stone”, Regul. Chaotic Dyn., 18:5 (2013), 521–538 | DOI | MR | Zbl
[75] Ph. A. Griffiths, Exterior differential systems and the calculus of variations, Progr. Math., 25, Birkhäuser, Boston, MA, 1983, ix+335 pp. | MR | MR | Zbl
[76] G. Hamel, “Die Lagrange–Eulerschen Gleichungen der Mechanik”, Z. Math. u. Phys., 50 (1904), 1–57 | Zbl
[77] G. Hamel, “Das Hamiltonsche Prinzip bei nichtholonomen Systemen”, Math. Ann., 111:1 (1935), 94–97 | DOI | MR | Zbl
[78] G. Hamel, Theoretische Mechanik. Eine einheitliche Einführung in die gesamte Mechanik, Grundlehren Math. Wiss., 57, Corrected reprint of the 1949 edition, Springer-Verlag, Berlin–New York, 1978, xv+796 pp. | DOI | MR | Zbl
[79] A. P. Ivanov, “On final motions of a Chaplygin ball on a rough plane”, Regul. Chaotic Dyn., 21:7-8 (2016), 804–810 | DOI | MR | Zbl
[80] V. Jurdjevic, “The geometry of the plate-ball problem”, Arch. Ration. Mech. Anal., 124:4 (1993), 305–328 | DOI | MR | Zbl
[81] A. V. Karapetyan, “On realizing nonholonomic constraints by viscous friction forces and Celtic stones stability”, J. Appl. Math. Mech., 45 (1982), 30–36 | DOI | MR | Zbl
[82] A. V. Karapetyan, Ustoichivost statsionarnykh dvizhenii, Editorial URSS, M., 1998, 165 pp.
[83] Yu. L. Karavaev, A. A. Kilin, “The dynamics and control of a spherical robot with an internal omniwheel platform”, Regul. Chaotic Dyn., 20:2 (2015), 134–152 | DOI | MR | Zbl
[84] P. V. Kharlamov, “A critique of some mathematical models of mechanical systems with differential constraints”, J. Appl. Math. Mech., 56:4 (1992), 584–594 | DOI | MR | Zbl
[85] A. A. Kilin, “The dynamics of Chaplygin ball: the qualitative and computer analysis”, Regul. Chaotic Dyn., 6:3 (2001), 291–306 | DOI | MR | Zbl
[86] J. D. G. Kooijman, J. P. Meijaard, J. M. Papadopoulos, A. Ruina, A. L. Schwab, “A bicycle can be self-stable without gyroscopic or caster effects”, Science, 332:6027 (2011), 339–342 | DOI | MR | Zbl
[87] S. Koshkin, V. Jovanovic, “Realization of non-holonomic constraints and singular perturbation theory for plane dumbbells”, J. Engrg. Math., 1–19 (to appear) , first online 2017
[88] V. V. Kozlov, “Dynamics of systems with nonintegrable constraints. I”, Moscow Univ. Mech. Bull., 37:3-4 (1982), 27–34 | MR | Zbl
[89] V. V. Kozlov, “Dynamics of systems with nonintegrable constraints. II”, Moscow Univ. Mech. Bull., 37:3-4 (1982), 74–80 | MR | Zbl
[90] V. V. Kozlov, “Dynamics of systems with nonintegrable constraints. III”, Moscow Univ. Mech. Bull., 38:3 (1983), 40–51 | MR | Zbl
[91] V. V. Kozlov, “Realization of nonintegrable constraints in classical mechanics”, Soviet Phys. Dokl., 28 (1983), 735–737 | MR | Zbl
[92] V. V. Kozlov, “On the integration theory of equations of nonholonomic mechanics”, Adv. Mech. USSR, 8:3 (1985), 85–107 ; Regul. Chaotic Dyn., 7:2 (2002), 191–176 | DOI | MR
[93] V. V. Kozlov, “The problem of realizing constraints in dynamics”, J. Appl. Math. Mech., 56:4 (1992), 594–600 | DOI | MR | Zbl
[94] V. V. Kozlov, “Several problems on dynamical systems and mechanics”, Nonlinearity, 21:9 (2008), T149–T155 | DOI | MR | Zbl
[95] V. V. Kozlov, “The Euler–Jacobi–Lie integrability theorem”, Regul. Chaotic Dyn., 18:4 (2013), 329–343 | DOI | MR | Zbl
[96] V. V. Kozlov, “The dynamics of systems with servoconstraints. I”, Regul. Chaotic Dyn., 20:3 (2015), 205–224 | DOI | MR | Zbl
[97] V. V. Kozlov, “The dynamics of systems with servoconstraints. II”, Regul. Chaotic Dyn., 20:4 (2015), 401–427 | DOI | MR | Zbl
[98] V. V. Kozlov, “The phenomenon of reversal in the Euler–Poincaré–Suslov nonholonomic systems”, J. Dyn. Control Syst., 22:4 (2016), 713–724 | DOI | MR | Zbl
[99] V. V. Kozlov, “Invariant measures of smooth dynamical systems, generalized functions and summation methods”, Izv. Math., 80:2 (2016), 342–358 | DOI | DOI | MR | Zbl
[100] V. V. Kozlov, A. A. Afonin, “Zadacha o padenii diska, dvizhuschegosya po gorizontalnoi ploskosti”, Izv. RAN. Mekh. tv. tela, 1 (1997), 7–13
[101] V. V. Kozlov, A. I. Neishtadt, “On the realization of holonomic constraints”, J. Appl. Math. Mech., 54:5 (1990), 705–708 | DOI | MR | Zbl
[102] V. V. Kozlov, V. A. Yaroshchuk, “On the invariant measures of Euler–Poincaré equations on unimodular groups”, Moscow Univ. Mech. Bull., 48:2 (1993), 45–50 | MR | Zbl
[103] J.-P. Laumond, P. E. Jacobs, M. Taix, R. M. Murray, “A motion planner for nonholonomic mobile robots”, IEEE Trans. on Robotics and Automation, 10:5 (1994), 577–593 | DOI
[104] G. B. Malykin, Yu. I. Neimark, “Negolonomnaya svyaz sostoyaniya polyarizatsii sveta i ugla skrutki odnomodovogo svetovoda s lineinym dvulucheprelomleniem”, Zhurnal tekhnicheskoi fiziki, 68:11 (1998), 22–25
[105] A. P. Markeev, “Ob integriruemosti zadachi o kachenii shara s mnogosvyaznoi polostyu, zapolnennoi idealnoi zhidkostyu”, Izv. AN SSSR. Mekh. tv. tela, 21:1 (1986), 64–65
[106] F. Mei, “Nonholonomic mechanics”, Appl. Mech. Rev., 53:11 (2000), 283–305 | DOI
[107] J. P. Meijaard, J. M. Papadopoulos, A. Ruina, A. L. Schwab, “Linearized dynamics equations for the balance and steer of a bicycle: a benchmark and review”, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 463:2084 (2007), 1955–1982 | DOI | MR | Zbl
[108] R. Montgomery, A tour of subriemannian geometries, their geodesics and applications, Math. Surveys Monogr., 91, Reprint of 2002 ed., Amer. Math. Soc., Providence, RI, 2006, xx+259 pp. | MR | Zbl
[109] A. Yu. Moskvin, “Shar Chaplygina s girostatom: osobye resheniya”, Nelineinaya dinam., 5:3 (2009), 345–356
[110] Ju. I. Neimark, N. A. Fufaev, Dynamics of nonholonomic systems, Transl. Math. Monogr., 33, Amer. Math. Soc., Providence, RI, 1967, ix+518 pp. | MR | Zbl | Zbl
[111] S. P. Novikov, “The Hamiltonian formalism and a many-valued analogue of Morse theory”, Russian Math. Surveys, 37:5 (1982), 1–56 | DOI | MR | Zbl
[112] P. Painlevé, Leçons sur le frottement, Hermann, Paris, 1895, viii+111 pp. | Zbl
[113] J. G. Papastavridis, “A panoramic overview of the principles and equations of motion of advanced engineering dynamics”, Appl. Mech. Rev., 51:4 (1998), 239–265 | DOI
[114] H. Poincaré, “Sur une forme nouvelle des équations de la mécanique”, C. R. Acad. Sci. Paris, 132 (1901), 369–371 | Zbl
[115] S. Rauch-Wojciechowski, M. Przybylska, “Understanding reversals of a rattleback”, Regul. Chaotic Dyn., 22:4 (2017), 368–385 | DOI | MR
[116] H. Rubin, P. Ungar, “Motion under a strong constraining force”, Comm. Pure Appl. Math., 10:1 (1957), 65–87 | DOI | MR | Zbl
[117] M. Svinin, A. Morinaga, M. Yamamoto, “On the dynamic model and motion planning for a spherical rolling robot actuated by orthogonal internal rotors”, Regul. Chaotic Dyn., 18:1-2 (2013), 126–143 | DOI | MR | Zbl
[118] J. L. Synge, “Geodesics in non-holonomic geometry”, Math. Ann., 99:1 (1928), 738–751 | DOI | MR | Zbl
[119] Ya. V. Tatarinov, “Consequences of a non-integrable perturbation of the integrable constraints: model problems of low dimensionality”, J. Appl. Math. Mech., 51:5 (1987), 579–586 | DOI | MR | Zbl
[120] Ya. V. Tatarinov, “Razdelyayuschie peremennye i novye topologicheskie yavleniya v golonomnykh i negolonomnykh sistemakh”, Tr. sem. po vektorn. i tenzorn. analizu, 23, MGU, M., 1988, 160–174 | MR | Zbl
[121] A. V. Tsyganov, “O puassonovykh strukturakh, voznikayuschikh pri rassmotrenii shara Chaplygina i ego obobschenii”, Nelineinaya dinam., 8:2 (2012), 345–353
[122] F. E. Udwadia, R. E. Kalaba, “Equations of motion for mechanical systems”, J. of Aerospace Engineering, 9:3 (1996), 64–69 | DOI
[123] F. E. Udwadia, R. E. Kalaba, “What is the general form of the explicit equations of motion for constrained mechanical systems?”, Trans. ASME J. Appl. Mech., 69:3 (2002), 335–339 | DOI | MR | Zbl
[124] V. Vagner, “Geometricheskaya interpretatsiya dvizheniya negolonomnykh dinamicheskikh sistem”, Tr. sem. po vektorn. i tenzorn. analizu, 5, MGU, M., 1941, 301–327 | MR | Zbl
[125] A. J. van der Schaft, B. M. Maschke, “On the Hamiltonian formulation of nonholonomic mechanical systems”, Rep. Math. Phys., 34:2 (1994), 225–233 | DOI | MR | Zbl
[126] A. M. Vershik, L. D. Faddeev, “Differential geometry and Lagrangian mechanics with constraints”, Soviet Phys. Dokl., 17:34–36 (1972) | Zbl
[127] A. M. Vershik, V. Ya. Gershkovich, “Nonholonomic dynamical systems, geometry of distributions and variational problems”, Dynamical systems VII, Encyclopaedia Math. Sci., 16, Springer, Berlin, 1994, 1–81 | DOI | MR | Zbl
[128] A. P. Veselov, L. E. Veselova, “Integrable nonholonomic systems on Lie groups”, Math. Notes, 44:5 (1988), 810–819 | DOI | MR | Zbl
[129] L. E. Veselova, “Novye sluchai integriruemosti uravnenii dvizheniya tverdogo tela pri nalichii negolonomnoi svyazi”, Geometriya, differentsialnye uravneniya i mekhanika (Moskva, 1985), eds. V. V. Kozlov, A. T. Fomenko, MGU, M., 1986, 64–68 | MR | Zbl
[130] E. V. Vetchanin, A. A. Kilin, “Free and controlled motion of a body with a moving internal mass though a fluid in the presence of circulation around the body”, Dokl. Phys., 61:1 (2016), 32–36 | DOI | MR
[131] E. V. Vetchanin, A. A. Kilin, I. S. Mamaev, “Control of the motion of a helical body in a fluid using rotors”, Regul. Chaotic Dyn., 21:7-8 (2016), 874–884 | DOI | MR | Zbl
[132] V.A. Yaroshchuk, “Some new cases of the existence of integral invariant in the problem on a rigid body rolling over a stationary surface without slip”, Moscow Univ. Mech. Bull., 47:6 (1992), 1–4 | MR | Zbl
[133] V. A. Yaroschuk, “Integralnyi invariant v zadache o kachenii ellipsoida so spetsialnymi raspredeleniyami mass po nepodvizhnoi poverkhnosti bez proskalzyvaniya”, Izv. RAN. Mekh. tv. tela, 1995, no. 2, 54–57
[134] N. T. Zung, N. V. Minh, “Geometry of nondegenerate ${\mathbb R}^n$-actions on $n$-manifolds”, J. Math. Soc. Japan, 66:3 (2014), 839–894 | DOI | MR | Zbl