The degree of the bifurcation set of a generic polynomial map
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 72 (2017) no. 4, pp. 773-775
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{RM_2017_72_4_a7,
author = {A. I. Esterov},
title = {The degree of the bifurcation set of a~generic polynomial map},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {773--775},
year = {2017},
volume = {72},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2017_72_4_a7/}
}
A. I. Esterov. The degree of the bifurcation set of a generic polynomial map. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 72 (2017) no. 4, pp. 773-775. http://geodesic.mathdoc.fr/item/RM_2017_72_4_a7/
[1] A. Esterov, Mosc. Math. J., 8:3 (2008), 433–442 ; Appendix in “Newton polyhedra of discriminants of projections”, 2010 (v1 – 2008), arXiv: 0810.4996 | MR | Zbl
[2] A. Esterov, J. Singul., 6 (2012), 27–36 | DOI | MR | Zbl
[3] A. Esterov, Adv. Math., 245 (2013), 534–572 ; (2012 (v1 – 2011)), 40 pp., arXiv: 1110.4060 | DOI | MR | Zbl
[4] I. M. Gel'fand, M. M. Kapranov, A. V. Zelevinsky, Discriminants, resultants, and multidimensional determinants, Math. Theory Appl., Birkhäuser, Boston, MA, 1994, x+523 pp. | DOI | MR | Zbl
[5] A. G. Khovanskii, Funkts. analiz i ego pril., 12:1 (1978), 51–61 | DOI | MR | Zbl