@article{RM_2017_72_4_a3,
author = {B. L. Feigin},
title = {Extensions of vertex algebras. {Constructions} and applications},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {707--763},
year = {2017},
volume = {72},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2017_72_4_a3/}
}
B. L. Feigin. Extensions of vertex algebras. Constructions and applications. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 72 (2017) no. 4, pp. 707-763. http://geodesic.mathdoc.fr/item/RM_2017_72_4_a3/
[1] A. A. Belavin, A. M. Polyakov, A. B. Zamolodchikov, “Infinite conformal symmetry in two-dimensional quantum field theory”, Nuclear Phys. B, 241:2 (1984), 333–380 | DOI | MR | Zbl
[2] A. Beilinson, V. Drinfeld, Chiral algebras, Amer. Math. Soc. Colloq. Publ., 51, Amer. Math. Soc., Providence, RI, 2004, vi+375 pp. | DOI | MR | Zbl
[3] E. Frenkel, D. Ben-Zvi, Vertex algebras and algebraic curves, Math. Surveys Monogr., 88, 2nd ed., Amer. Math. Soc., Providence, RI, 2004, xiv+400 pp. | DOI | MR | Zbl
[4] M. Wakimoto, “Fock representations of the affine Lie algebra $A_1^{(1)}$”, Comm. Math. Phys., 104:4 (1986), 605–609 | DOI | MR | Zbl
[5] B. Feigin, E. Frenkel, “Free field resolutions in affine Toda field theories”, Phys. Lett. B, 276:1-2 (1992), 79–86 | DOI | MR
[6] C. Dong, J. Lepowsky, Generalized vertex algebras and relative vertex operators, Progr. Math., 112, Birkhäuser Boston, Boston, MA, 1993, x+202 pp. | DOI | MR | Zbl
[7] D. Bakalov, V. G. Kac, “Generalized vertex algebras”, Lie theory and its applications in physics VI, Heron Press, Sofia, 2006, 3–25
[8] D. Kazhdan, G. Lusztig, “Affine Lie algebras and quantum groups”, Internat. Math. Res. Notices, 1991:2 (1991), 21–29 | DOI | MR | Zbl
[9] V. G. Drinfel'd, “Quasi-Hopf algebras and Knizhnik–Zamolodchikov equations”, Problems of modern quantum field theory (Alushta, 1989), Res. Rep. Phys., Springer, Berlin, 1989, 1–13 | DOI | MR
[10] V. Ostrik, “Module categories over the {Drinfeld} double of a finite group”, Int. Math. Res. Not., 2003:27 (2003), 1507–1520 | DOI | MR | Zbl
[11] B. Feigin, S. Parkhomenko, “Regular representation of affine Kac–Moody algebras”, Algebraic and geometric methods in mathematical physics (Kaciveli, 1993), Math. Phys. Stud., 19, Kluwer Acad. Publ., Dordrecht, 1996, 415–424 | MR | Zbl
[12] B. L. Feigin, E. V. Frenkel, “Representations of affine Kac–Moody algebras, bosonization and resolutions”, Lett. Math. Phys., 19:4 (1990), 307–317 | DOI | MR | Zbl
[13] S. Arkhipov, D. Gaitsgory, “Differential operators on the loop group via chiral algebras”, Int. Math. Res. Not., 2002:4 (2002), 165–210 | DOI | MR | Zbl
[14] A. Beilinson, V. Drinfeld, Quantization of Hitchin's integrable system and Hecke eigensheaves, preliminary version, 384 \par pp. http://www.math.uchicago.edu/~mitya/langlands.html
[15] A. A. Beilinson, V. G. Drinfeld, “Quantization of Hitchin's fibration and Langland's program”, Algebraic and geometric methods in mathematical physics (Kaciveli, 1993), Math. Phys. Stud., 19, Kluwer Acad. Publ., Dordrecht, 1996, 3–7 | DOI | MR | Zbl
[16] E. Frenkel, “Lectures on the Langlands program and conformal field theory”, Frontiers in number theory, physics, and geometry. II, Springer, Berlin, 2007, 387–533 | DOI | MR | Zbl
[17] V. V. Batyrev, L. A. Borisov, “On Calabi–Yau complete intersections in toric varieties”, Higher-dimensional complex varieties (Trento, 1994), de Gruyter, Berlin, 1996, 39–65 | MR | Zbl
[18] V. Gorbounov, F. Malikov, V. Schechtman, “Gerbes of chiral differential operators”, Math. Res. Lett., 7:1 (2000), 55–66 ; (1999), 12 pp., arXiv: math/9906117 | DOI | MR | Zbl
[19] W. L. Gan, V. Ginzburg, “Quantization of Slodowy slices”, Int. Math. Res. Not., 2002:5 (2002), 243–255 | DOI | MR | Zbl
[20] A. Premet, “Special transverse slices and their enveloping algebras”, Adv. Math., 170:1 (2002), 1–55 | DOI | MR | Zbl
[21] B. Feigin, E. Frenkel, “Quantization of the Drinfel'd–Sokolov reduction”, Phys. Lett. B, 246:1-2 (1990), 75–81 | DOI | MR | Zbl
[22] D. Kazhdan, G. Lusztig, “Tensor structures arising from affine Lie algebras. I”, J. Amer. Math. Soc., 6:4 (1993), 905–947 | DOI | MR | Zbl
[23] D. Kazhdan, G. Lusztig, “Tensor structures arising from affine {Lie} algebras. II”, J. Amer. Math. Soc., 6:4 (1993), 949–1011 | DOI | MR | Zbl
[24] D. Kazhdan, G. Lusztig, “Tensor structures arising from affine Lie algebras. III”, J. Amer. Math. Soc., 7:2 (1994), 335–381 | DOI | MR | Zbl
[25] D. Kazhdan, G. Lusztig, “Tensor structures arising from affine Lie algebras. IV”, J. Amer. Math. Soc., 7:2 (1994), 383–453 | DOI | MR | Zbl
[26] G. Lusztig, “Canonical bases arising from quantized enveloping algebras”, J. Amer. Math. Soc., 3:2 (1990), 447–498 | DOI | MR | Zbl
[27] P. Deligne, Une description de catégorie tressée (inspiré par {Drinfeld}), Letter to V. Drinfeld, 1990, unpublished
[28] B. L. Feigin, “The semi-infinite homology of Kac–Moody and Virasoro Lie algebras”, Russian Math. Surveys, 39:2 (1984), 155–156 | DOI | MR | Zbl
[29] B. Bakalov, A. Kirillov, Jr., Lectures on tensor categories and modular functors, Univ. Lecture Ser., 21, Amer. Math. Soc., Providence, RI, 2001, x+221 pp. | MR | Zbl
[30] B. L. Feigin, A. M. Gainutdinov, A. M. Semikhatov, I. Yu. Tipunin, “Logarithmic extensions of minimal models: characters and modular transformations”, Nuclear Phys. B, 757:3 (2006), 303–343 | DOI | MR | Zbl
[31] B. L. Feigin, I. Yu. Tipunin, Logarithmic CFTs connected with simple Lie algebras, 2010, 14 pp., arXiv: 1002.5047
[32] A. Tsuchiya, S. Wood, “The tensor structure on the representation category of the $\mathscr W_p$ triplet algebra”, J. Phys. A, 46:44 (2013), 445203, 40 pp. | DOI | MR | Zbl
[33] A. Beilinson, V. Drinfeld, Opers, 2005, 29 pp., arXiv: math.AG/0501398
[34] O. Gamayun, N. Iorgov, O. Lisovyy, “How instanton combinatorics solves Painlevé VI, V and IIIs”, J. Phys. A, 46:33 (2013), 335203, 29 pp. | DOI | MR | Zbl
[35] M. A. Bershtein, A. I. Shchechkin, “$q$-deformed Painlevé $\tau$ function and $q$-deformed conformal blocks”, J. Phys. A, 50:8 (2017), 085202, 22 pp. | DOI | MR | Zbl
[36] B. L. Feigin, A. M. Semikhatov, “$\mathscr W^{(2)}_n$ algebras”, Nuclear Phys. B, 698:3 (2004), 409–449 | DOI | MR | Zbl
[37] M. Bershadsky, “Conformal field theories via Hamiltonian reduction”, Comm. Math. Phys., 139:1 (1991), 71–82 | DOI | MR | Zbl
[38] A. M. Polyakov, “Gauge transformations and diffeomorphisms”, Internat. J. Modern Phys. A, 5:05 (1990), 833–842 | DOI | MR | Zbl
[39] J. E. Marsden, G. Misiołek, J.-P. Ortega, M. Perlmutter, T. S. Ratiu, Hamiltonian reduction by stages, Lecture Notes in Math., 1913, Springer, Berlin, 2007, xvi+519 pp. | DOI | MR | Zbl
[40] J. Brundan, A. Kleshchev, “Shifted Yangians and finite $W$-algebras”, Adv. Math., 200:1 (2006), 136–195 | DOI | MR | Zbl
[41] J. Brundan, A. Kleshchev, Representations of shifted Yangians and finite $W$-algebras, Mem. Amer. Math. Soc., 196, No 918, Amer. Math. Soc., Providence, RI, 2008, viii+107 pp. ; 2006 (v1 – 2005), 109 pp., arXiv: math/0508003 | DOI | MR | Zbl
[42] G. I. Olshanskii, “Twisted Yangians and infinite-dimensional classical Lie algebras”, Quantum groups (Leningrad, 1990), Lecture Notes in Math., 1510, Springer, Berlin, 1992, 104–119 | DOI | MR | Zbl
[43] A. I. Molev, “Yangians and their applications”, Handbook of algebra, v. 3, Elsevier/North-Holland, Amsterdam, 2003, 907–959 | DOI | MR | Zbl
[44] P. Etingof, S. Gelaki, D. Nikshych, V. Ostrik, Tensor categories, Math. Surveys Monogr., 205, Amer. Math. Soc., Providence, RI, 2015, xvi+343 pp. | DOI | MR | Zbl
[45] V. G. Kac, Infinite dimensional Lie algebras, 3rd ed., Cambridge Univ. Press, Cambridge, 1990, xxii+400 pp. | DOI | MR | MR | Zbl | Zbl
[46] M. Atiyah, “Topological quantum field theories”, Inst. Hautes Études Sci. Publ. Math., 68:1 (1988), 175–186 | DOI | MR | Zbl