Hermite–Padé approximants for meromorphic functions on a compact Riemann surface
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 72 (2017) no. 4, pp. 671-706 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of the limiting distribution of the zeros and the asymptotic behaviour of the Hermite–Padé polynomials of the first kind is considered for a system of germs $[1,f_{1,\infty},\dots,f_{m,\infty}]$ of meromorphic functions $f_j$, $j=1,\dots,m$, on an $(m+1)$-sheeted Riemann surface ${\mathfrak R}$. Nuttall's approach to the solution of this problem, based on a particular ‘Nuttall’ partition of ${\mathfrak R}$ into sheets, is further developed. Bibliography: 36 titles.
Keywords: distribution of zeros, convergence in capacity.
Mots-clés : rational approximants, Hermite–Padé polynomials
@article{RM_2017_72_4_a2,
     author = {A. V. Komlov and R. V. Palvelev and S. P. Suetin and E. M. Chirka},
     title = {Hermite{\textendash}Pad\'e approximants for meromorphic functions on a compact {Riemann} surface},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {671--706},
     year = {2017},
     volume = {72},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2017_72_4_a2/}
}
TY  - JOUR
AU  - A. V. Komlov
AU  - R. V. Palvelev
AU  - S. P. Suetin
AU  - E. M. Chirka
TI  - Hermite–Padé approximants for meromorphic functions on a compact Riemann surface
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2017
SP  - 671
EP  - 706
VL  - 72
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/RM_2017_72_4_a2/
LA  - en
ID  - RM_2017_72_4_a2
ER  - 
%0 Journal Article
%A A. V. Komlov
%A R. V. Palvelev
%A S. P. Suetin
%A E. M. Chirka
%T Hermite–Padé approximants for meromorphic functions on a compact Riemann surface
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2017
%P 671-706
%V 72
%N 4
%U http://geodesic.mathdoc.fr/item/RM_2017_72_4_a2/
%G en
%F RM_2017_72_4_a2
A. V. Komlov; R. V. Palvelev; S. P. Suetin; E. M. Chirka. Hermite–Padé approximants for meromorphic functions on a compact Riemann surface. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 72 (2017) no. 4, pp. 671-706. http://geodesic.mathdoc.fr/item/RM_2017_72_4_a2/

[1] A. I. Aptekarev, “Asymptotics of Hermite–Padé approximants for two functions with branch points”, Dokl. Math., 78:2 (2008), 717–719 | DOI | MR | Zbl

[2] A. I. Aptekarev, V. I. Buslaev, A. Martínez-Finkelshtein, S. P. Suetin, “Padé approximants, continued fractions, and orthogonal polynomials”, Russian Math. Surveys, 66:6 (2011), 1049–1131 | DOI | DOI | MR | Zbl

[3] A. I. Aptekarev, A. B. J. Kuijlaars, W. Van Assche, “Asymptotics of Hermite–Padé rational approximants for two analytic functions with separated pairs of branch points (case of genus 0)”, Int. Math. Res. Pap. IMRP, 2008 (2008), rpm007, 128 pp. | DOI | MR | Zbl

[4] A. I. Aptekarev, G. López Lagomasino, I. A. Rocha, “Ratio asymptotics of Hermite–Padé polynomials for Nikishin systems”, Sb. Math., 196:8 (2005), 1089–1107 | DOI | DOI | MR | Zbl

[5] A. I. Aptekarev, V. G. Lysov, “Systems of Markov functions generated by graphs and the asymptotics of their Hermite–Padé approximants”, Sb. Math., 201:2 (2010), 183–234 | DOI | DOI | MR | Zbl

[6] A. I. Aptekarev, D. N. Tulyakov, “Nuttall's Abelian integral on the Riemann surface of the cube root of a polynomial of degree 3”, Izv. Math., 80:6 (2016), 997–1034 | DOI | DOI | MR | Zbl

[7] A. I. Aptekarev, W. Van Assche, M. L. Yattselev, “Hermite–Padé approximants for a pair of Cauchy transforms with overlapping symmetric supports”, Comm. Pure Appl. Math., 70:3 (2017), 444–510 | DOI | MR | Zbl

[8] V. I. Buslaev, “Convergence of $m$-point Padé approximants of a tuple of multivalued analytic functions”, Sb. Math., 206:2 (2015), 175–200 | DOI | DOI | MR | Zbl

[9] V. I. Buslaev, S. P. Suetin, “On equilibrium problems related to the distribution of zeros of the Hermite–Padé polynomials”, Proc. Steklov Inst. Math., 290:1 (2015), 256–263 | DOI | DOI | MR | Zbl

[10] E. M. Chirka, Complex analytic sets, Math. Appl. (Soviet Ser.), 46, Kluwer Acad. Publ., Dordrecht, 1989, xx+372 pp. | DOI | MR | MR | Zbl | Zbl

[11] E. M. Chirka, “Rimanovy poverkhnosti”, Lekts. kursy NOTs, 1, MIAN, M., 2006, 3–105 | DOI | Zbl

[12] E. M. Chirka, “On the $\bar\partial$-problem with $L^2$-estimates on a Riemann surface”, Proc. Steklov Inst. Math., 290:1 (2015), 264–276 | DOI | DOI | MR | Zbl

[13] Zh. de Ram, Differentsiruemye mnogoobraziya, IL, M., 1956, 250 pp. ; 2-Рμ РёР·Рґ., РљРѕРјРљРЅРёРіР°, Рњ., 2006, 248 СЃ.; G. de Rham, Variétés différentiables. Formes, courants, formes harmoniques, Actualités Sci. Ind., 1222, = Publ. Inst. Math. Univ. Nancago, III, Hermann et Cie, Paris, 1955, vii+196 pp. | MR | MR | Zbl

[14] A. A. Gonchar, “Rational approximations of analytic functions”, Proc. Steklov Inst. Math., 272, suppl. 2 (2011), S44–S57 | DOI | DOI | MR | Zbl

[15] A. A. Gonchar, E. A. Rakhmanov, “On the convergence of simultaneous Padé approximants for systems of functions of Markov type”, Proc. Steklov Inst. Math., 157 (1983), 31–50 | MR | Zbl

[16] A. A. Gonchar, E. A. Rakhmanov, “On the equilibrium problem for vector potentials”, Russian Math. Surveys, 40:4 (1985), 183–184 | DOI | MR | Zbl

[17] A. A. Gonchar, E. A. Rakhmanov, “Equilibrium distributions and degree of rational approximation of analytic functions”, Math. USSR-Sb., 62:2 (1989), 305–348 | DOI | MR | Zbl

[18] A. A. Gonchar, E. A. Rakhmanov, V. N. Sorokin, “Hermite–Padé approximants for systems of Markov-type functions”, Sb. Math., 188:5 (1997), 671–696 | DOI | DOI | MR | Zbl

[19] N. R. Ikonomov, R. K. Kovacheva, S. P. Suetin, “Nuttall's integral equation and Bernshtein's asymptotic formula for a complex weight”, Izv. Math., 79:6 (2015), 1215–1234 | DOI | DOI | MR | Zbl

[20] A. V. Komlov, N. G. Kruzhilin, R. V. Palvelev, S. P. Suetin, “Convergence of Shafer quadratic approximants”, Russian Math. Surveys, 71:2 (2016), 373–375 | DOI | DOI | MR | Zbl

[21] A. V. Komlov, S. P. Suetin, “Distribution of the zeros of Hermite–Padé polynomials”, Russian Math. Surveys, 70:6 (2015), 1179–1181 | DOI | DOI | MR | Zbl

[22] R. K. Kovacheva, S. P. Suetin, “Distribution of zeros of the Hermite–Padé polynomials for a system of three functions, and the Nuttall condenser”, Proc. Steklov Inst. Math., 284 (2014), 168–191 | DOI | DOI | MR | Zbl

[23] G. López Lagomasino, S. Medina Peralta, U. Fidalgo Prieto, “Hermite–Padé approximation for certain systems of meromorphic functions”, Sb. Math., 206:2 (2015), 225–241 | DOI | DOI | MR | Zbl

[24] A. Martínez-Finkelshtein, E. A. Rakhmanov, S. P. Suetin, “Asymptotics of type I Hermite–Padé polynomials for semiclassical functions”, Modern trends in constructive function theory, Contemp. Math., 661, Amer. Math. Soc., Providence, RI, 2016, 199–228 ; 2015, 40 pp., arXiv: 1502.01202 | DOI | MR | Zbl

[25] E. M. Nikišin, “On simultaneous Padé approximants”, Math. USSR-Sb., 41:4 (1982), 409–425 | DOI | MR | Zbl

[26] E. M. Nikishin, “The asymptotic behavior of linear forms for joint Padé approximations”, Soviet Math. (Iz. VUZ), 30:2 (1986), 43–52 | MR | Zbl

[27] J. Nuttall, “Hermite–Padé approximants to functions meromorphic on a Riemann surface”, J. Approx. Theory, 32:3 (1981), 233–240 | DOI | MR | Zbl

[28] J. Nuttall, “Asymptotics of diagonal Hermite–Padé polynomials”, J. Approx. Theory, 42:4 (1984), 299–386 | DOI | MR | Zbl

[29] E. A. Rakhmanov, S. P. Suetin, “The distribution of the zeros of the Hermite–Padé polynomials for a pair of functions forming a Nikishin system”, Sb. Math., 204:9 (2013), 1347–1390 | DOI | DOI | MR | Zbl

[30] H. Stahl, “Three different approaches to a proof of convergence for Padé approximants”, Rational approximation and applications in mathematics and physics (Łańcut, 1985), Lecture Notes in Math., 1237, Springer, Berlin, 1987, 79–124 | DOI | MR | Zbl

[31] H. Stahl, “The convergence of Padé approximants to functions with branch points”, J. Approx. Theory, 91:2 (1997), 139–204 | DOI | MR | Zbl

[32] H. R. Stahl, Sets of minimal capacity and extremal domains, 2012, 112 pp., arXiv: 1205.3811

[33] S. P. Suetin, “Distribution of the zeros of Padé polynomials and analytic continuation”, Russian Math. Surveys, 70:5 (2015), 901–951 | DOI | DOI | MR | Zbl

[34] S. P. Suetin, “Zero distribution of Hermite–Padé polynomials and localization of branch points of multivalued analytic functions”, Russian Math. Surveys, 71:5 (2016), 976–978 | DOI | DOI | MR | Zbl

[35] S. P. Suetin, “On the distribution of the zeros of the Hermite–Padé polynomials for a quadruple of functions”, Russian Math. Surveys, 72:2 (2017), 375–377 | DOI | DOI | MR

[36] W. Van Assche, “Padé and Hermite–Padé approximation and orthogonality”, Surv. Approx. Theory, 2 (2006), 61–91 | MR | Zbl