Hermite--Pad\'e approximants for meromorphic functions on a compact Riemann surface
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 72 (2017) no. 4, pp. 671-706

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of the limiting distribution of the zeros and the asymptotic behaviour of the Hermite–Padé polynomials of the first kind is considered for a system of germs $[1,f_{1,\infty},\dots,f_{m,\infty}]$ of meromorphic functions $f_j$, $j=1,\dots,m$, on an $(m+1)$-sheeted Riemann surface ${\mathfrak R}$. Nuttall's approach to the solution of this problem, based on a particular ‘Nuttall’ partition of ${\mathfrak R}$ into sheets, is further developed. Bibliography: 36 titles.
Keywords: Hermite–Padé polynomials, distribution of zeros, convergence in capacity.
Mots-clés : rational approximants
@article{RM_2017_72_4_a2,
     author = {A. V. Komlov and R. V. Palvelev and S. P. Suetin and E. M. Chirka},
     title = {Hermite--Pad\'e approximants for meromorphic functions on a compact {Riemann} surface},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {671--706},
     publisher = {mathdoc},
     volume = {72},
     number = {4},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2017_72_4_a2/}
}
TY  - JOUR
AU  - A. V. Komlov
AU  - R. V. Palvelev
AU  - S. P. Suetin
AU  - E. M. Chirka
TI  - Hermite--Pad\'e approximants for meromorphic functions on a compact Riemann surface
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2017
SP  - 671
EP  - 706
VL  - 72
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_2017_72_4_a2/
LA  - en
ID  - RM_2017_72_4_a2
ER  - 
%0 Journal Article
%A A. V. Komlov
%A R. V. Palvelev
%A S. P. Suetin
%A E. M. Chirka
%T Hermite--Pad\'e approximants for meromorphic functions on a compact Riemann surface
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2017
%P 671-706
%V 72
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_2017_72_4_a2/
%G en
%F RM_2017_72_4_a2
A. V. Komlov; R. V. Palvelev; S. P. Suetin; E. M. Chirka. Hermite--Pad\'e approximants for meromorphic functions on a compact Riemann surface. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 72 (2017) no. 4, pp. 671-706. http://geodesic.mathdoc.fr/item/RM_2017_72_4_a2/