Hermite--Pad\'e approximants for meromorphic functions on a compact Riemann surface
    
    
  
  
  
      
      
      
        
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 72 (2017) no. 4, pp. 671-706
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The problem of the limiting distribution of the zeros and the asymptotic behaviour of the Hermite–Padé polynomials of the first kind is considered for a system of germs $[1,f_{1,\infty},\dots,f_{m,\infty}]$ of meromorphic functions $f_j$, $j=1,\dots,m$, on an $(m+1)$-sheeted Riemann surface ${\mathfrak R}$. Nuttall's approach to the solution of this problem,  based on a particular ‘Nuttall’ partition of ${\mathfrak R}$ into sheets, is further developed.
Bibliography: 36 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
Hermite–Padé polynomials, distribution of zeros, convergence in capacity.
Mots-clés : rational approximants
                    
                  
                
                
                Mots-clés : rational approximants
@article{RM_2017_72_4_a2,
     author = {A. V. Komlov and R. V. Palvelev and S. P. Suetin and E. M. Chirka},
     title = {Hermite--Pad\'e approximants for meromorphic functions on a compact {Riemann} surface},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {671--706},
     publisher = {mathdoc},
     volume = {72},
     number = {4},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2017_72_4_a2/}
}
                      
                      
                    TY - JOUR AU - A. V. Komlov AU - R. V. Palvelev AU - S. P. Suetin AU - E. M. Chirka TI - Hermite--Pad\'e approximants for meromorphic functions on a compact Riemann surface JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2017 SP - 671 EP - 706 VL - 72 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RM_2017_72_4_a2/ LA - en ID - RM_2017_72_4_a2 ER -
%0 Journal Article %A A. V. Komlov %A R. V. Palvelev %A S. P. Suetin %A E. M. Chirka %T Hermite--Pad\'e approximants for meromorphic functions on a compact Riemann surface %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2017 %P 671-706 %V 72 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/RM_2017_72_4_a2/ %G en %F RM_2017_72_4_a2
A. V. Komlov; R. V. Palvelev; S. P. Suetin; E. M. Chirka. Hermite--Pad\'e approximants for meromorphic functions on a compact Riemann surface. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 72 (2017) no. 4, pp. 671-706. http://geodesic.mathdoc.fr/item/RM_2017_72_4_a2/
