Boundary behaviour of automorphisms of a hyperbolic space
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 72 (2017) no. 4, pp. 645-670

Voir la notice de l'article provenant de la source Math-Net.Ru

An automorphism of a Euclidean ball extends to a homeomorphic mapping of the closed ball even when the quasiconformality coefficient of the mapping increases unboundedly but in a controlled way upon approaching the boundary of the ball. By means of Poincaré's conformally Euclidean model of the Lobachevsky space, this yields a condition under which an automorphism of a hyperbolic space still extends to the ideal boundary (the absolute) of the space when translated into geometric language. Bibliography: 28 titles.
Keywords: hyperbolic space, Poincaré's model, quasiconformal mapping, equimorphism of the Lobachevsky space, asymptotic behaviour of the quasiconformality coefficient, boundary behaviour of a mapping.
@article{RM_2017_72_4_a1,
     author = {V. A. Zorich},
     title = {Boundary behaviour of automorphisms of a hyperbolic space},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {645--670},
     publisher = {mathdoc},
     volume = {72},
     number = {4},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2017_72_4_a1/}
}
TY  - JOUR
AU  - V. A. Zorich
TI  - Boundary behaviour of automorphisms of a hyperbolic space
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2017
SP  - 645
EP  - 670
VL  - 72
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_2017_72_4_a1/
LA  - en
ID  - RM_2017_72_4_a1
ER  - 
%0 Journal Article
%A V. A. Zorich
%T Boundary behaviour of automorphisms of a hyperbolic space
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2017
%P 645-670
%V 72
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_2017_72_4_a1/
%G en
%F RM_2017_72_4_a1
V. A. Zorich. Boundary behaviour of automorphisms of a hyperbolic space. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 72 (2017) no. 4, pp. 645-670. http://geodesic.mathdoc.fr/item/RM_2017_72_4_a1/