Boundary behaviour of automorphisms of a hyperbolic space
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 72 (2017) no. 4, pp. 645-670 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An automorphism of a Euclidean ball extends to a homeomorphic mapping of the closed ball even when the quasiconformality coefficient of the mapping increases unboundedly but in a controlled way upon approaching the boundary of the ball. By means of Poincaré's conformally Euclidean model of the Lobachevsky space, this yields a condition under which an automorphism of a hyperbolic space still extends to the ideal boundary (the absolute) of the space when translated into geometric language. Bibliography: 28 titles.
Keywords: hyperbolic space, quasiconformal mapping, equimorphism of the Lobachevsky space, asymptotic behaviour of the quasiconformality coefficient, boundary behaviour of a mapping.
Mots-clés : Poincaré's model
@article{RM_2017_72_4_a1,
     author = {V. A. Zorich},
     title = {Boundary behaviour of automorphisms of a hyperbolic space},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {645--670},
     year = {2017},
     volume = {72},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2017_72_4_a1/}
}
TY  - JOUR
AU  - V. A. Zorich
TI  - Boundary behaviour of automorphisms of a hyperbolic space
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2017
SP  - 645
EP  - 670
VL  - 72
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/RM_2017_72_4_a1/
LA  - en
ID  - RM_2017_72_4_a1
ER  - 
%0 Journal Article
%A V. A. Zorich
%T Boundary behaviour of automorphisms of a hyperbolic space
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2017
%P 645-670
%V 72
%N 4
%U http://geodesic.mathdoc.fr/item/RM_2017_72_4_a1/
%G en
%F RM_2017_72_4_a1
V. A. Zorich. Boundary behaviour of automorphisms of a hyperbolic space. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 72 (2017) no. 4, pp. 645-670. http://geodesic.mathdoc.fr/item/RM_2017_72_4_a1/

[1] F. W. Gehring, “Rings and quasiconformal mappings in space”, Trans. Amer. Math. Soc., 103:3 (1962), 353–393 | DOI | MR | Zbl

[2] G. D. Mostow, “Quasi-conformal mappings in $n$-space and the rigidity of hyperbolic space forms”, Inst. Hautes Études Sci. Publ. Math., 34 (1968), 53–104 | DOI | MR | Zbl

[3] G. A. Margulis, “Isometry of closed manifolds of constant negative curvature with the same fundamental group”, Soviet Math. Dokl., 11 (1970), 722–723 | MR | Zbl

[4] D. Sullivan, “On the ergodic theory at infinity of an arbitrary discrete group of hyperbolic motions”, Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook conference (State Univ. New York, Stony Brook, N. Y., 1978), Ann. of Math. Stud., 97, Princeton Univ. Press, Princeton, NJ, 1981, 465–496 | MR | Zbl

[5] D. Sullivan, “Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups”, Acta Math., 153:3-4 (1984), 259–277 | DOI | MR | Zbl

[6] P. Tukia, “On isomorphisms of geometrically finite Möbius groups”, Inst. Hautes Études Sci. Publ. Math., 61 (1985), 171–214 | DOI | MR | Zbl

[7] P. Tukia, “A rigidity theorem for Möbius groups”, Invent. Math., 97:2 (1989), 405–431 | DOI | MR | Zbl

[8] G. D. Mostow, Strong rigidity of locally symmetric spaces, Ann. of Math. Stud., 78, Princeton Univ. Press, Princeton, NJ; Univ. of Tokyo Press, Tokyo, 1973, v+195 pp. | DOI | MR | Zbl

[9] V. A. Zorich, “Asymptotics of the quasiconformality coefficient, and the boundary behavior of an automorphism of the disk”, Soviet Math. Dokl., 33 (1986), 647–649 | MR | Zbl

[10] M. Perović, “Growth of the coefficient of quasiconformality and the boundary correspondence of automorphisms of a ball”, Comment. Math. Helv., 61:1 (1986), 60–66 | DOI | MR | Zbl

[11] M. N. Pantyukhina, “Asymptotics of the coefficient of quasiconformality, and the boundary behavior of a mapping of a ball”, Math. USSR-Sb., 74:2 (1993), 583–591 | DOI | MR | Zbl

[12] V. A. Efremovich, E. S. Tikhomirova, “Ekvimorfizmy giperbolicheskikh prostranstv”, Izv. AN SSSR. Ser. matem., 28:5 (1964), 1139–1144 | MR | Zbl

[13] V. A. Efremovich, È. A. Loginov, E. S. Tikhomirova, “Equimorphisms of Riemannian manifolds”, Math. USSR-Izv., 6:3 (1972), 518–528 | DOI | MR | Zbl

[14] M. Lavrentieff, “Sur un critère différentiel des transformations homéomorphes des domaines à trois dimensions”, C. R. (Dokl.) Acad. Sci. URSS, 20:4 (1938), 241–242 | Zbl

[15] V. A. Zorič, “A theorem of M. A. Lavrent'ev on quasiconformal space maps”, Math. USSR-Sb., 3:3 (1967), 389–403 | DOI | MR | Zbl

[16] V. A. Zorich, “The global homeomorphism theorem for space quasiconformal mappings, its development and related open problems”, Quasiconformal space mappings, Lecture Notes in Math., 1508, Springer, Berlin, 1992, 132–148 | DOI | MR | Zbl

[17] V. A. Zorich, “Quasi-conformal maps and the asymptotic geometry of manifolds”, Russian Math. Surveys, 57:3 (2002), 437–462 | DOI | DOI | MR | Zbl

[18] M. Gromov, “Hyperbolic manifolds, groups and actions”, Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook conference (State Univ. New York, Stony Brook, N. Y., 1978), Ann. of Math. Stud., 97, Princeton Univ. Press, Princeton, NJ, 1981, 183–213 | MR | Zbl

[19] M. Gromov, Metric structures for Riemannian and non-Riemannian spaces, With appendices by M. Katz, P. Pansu, and S. Semmes, Progr. Math., 152, Based on the 1981 French original, Birkhäuser Boston, Inc., Boston, MA, 1999, xx+585 pp. | MR | Zbl

[20] V. A. Zorich, “Admissible order of growth of the quasiconformality characteristic in Lavrent'ev's theorem”, Soviet Math. Dokl., 9 (1968), 866–869 | MR | Zbl

[21] V. A. Zorich, “Asymptotics of the admissible growth of the coefficient of quasiconformality at infinity and injectivity of immersions of Riemannian manifolds”, Publ. Inst. Math. (Beograd) (N. S.), 75:89 (2004), 53–57 | DOI | MR | Zbl

[22] V. A. Zorich, “On the measure of conformal difference between Euclidean and Lobachevsky spaces”, Sb. Math., 202:12 (2011), 1825–1830 | DOI | DOI | MR | Zbl

[23] L. V. Ahlfors, Lectures on quasiconformal mappings, Van Nostrand Mathematical Studies, 10, D. Van Nostrand Co., Inc., Toronto, ON–New York–London, 1966, v+146 pp. | MR | MR | Zbl | Zbl

[24] J. Väisälä, Lectures on $n$-dimensional quasiconformal mappings, Lecture Notes in Math., 229, Springer-Verlag, Berlin–New York, 1971, xiv+144 pp. | DOI | MR | Zbl

[25] V. A. Zorich, V. M. Kesel'man, “On the conformal type of a Riemannian manifold”, Funct. Anal. Appl., 30:2 (1996), 106–117 | DOI | DOI | MR | Zbl

[26] V. G. Maz'ja, Sobolev spaces, Springer Ser. Soviet Math., Springer-Verlag, Berlin, 1985, xix+486 pp. | DOI | MR | MR | Zbl | Zbl

[27] A. Grigor'yan, “Isoperimetric inequality and capacities on Riemannian manifolds”, The Maz'ya anniversary collection (Rostock, 1998), v. 1, Oper. Theory Adv. Appl., 109, Birkhäuser, Basel, 1999, 139–153 | MR | Zbl

[28] M. L. Gromov, “Colourful categories”, Russian Math. Surveys, 70:4 (2015), 591–655 | DOI | DOI | MR | Zbl