@article{RM_2017_72_4_a0,
author = {M. I. Belishev},
title = {Boundary control and tomography of {Riemannian} manifolds (the {BC-method)}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {581--644},
year = {2017},
volume = {72},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2017_72_4_a0/}
}
M. I. Belishev. Boundary control and tomography of Riemannian manifolds (the BC-method). Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 72 (2017) no. 4, pp. 581-644. http://geodesic.mathdoc.fr/item/RM_2017_72_4_a0/
[1] A. D. Agaltsov, G. M. Henkin, “Explicit reconstruction of Riemann surface with given boundary in complex projective space”, J. Geom. Anal., 25:4 (2015), 2450–2473 ; https://hal.archives-ouvertes.fr/hal-00912925 | DOI | MR | Zbl
[2] G. Alessandrini, “Stable determination of conductivity by boundary measurements”, Appl. Anal., 27:1-3 (1988), 153–172 | DOI | MR | Zbl
[3] S. A. Avdonin, A. S. Blagoveshchensky, A. E. Choque Rivero, V. S. Mikhaylov, “Dynamical inverse problem for two-velocity systems on finite trees”, Proceedings of the international conference “Days on diffraction 2016” (St. Petersburg, 2016), 2016, 25–31 | DOI
[4] S. Avdonin, A. Choque Rivero, G. Leugering, V. Mikhaylov, “On the inverse problem of the two-velocity tree-like graph”, ZAMM Z. Angew. Math. Mech., 95:12 (2015), 1490–1500 | DOI | MR | Zbl
[5] S. Avdonin, G. Leugering, V. Mikhaylov, “On an inverse problem for tree-like networks of elastic strings”, ZAMM Z. Angew. Math. Mech., 90:2 (2010), 136–150 | DOI | MR | Zbl
[6] S. A. Avdonin, A. S. Mikhaylov, V. S. Mikhaylov, “On some applications of the boundary control method to spectral estimation and inverse problems”, Nanosystems: Phys., Chem., Math., 6:1 (2015), 63–78 | DOI
[7] S. A. Avdonin, V. S. Mikhaylov, K. B. Nurtazina, “On inverse dynamical and spectral problems for the wave and Schrödinger equations on finite trees. The leaf peeling method”, Matematicheskie voprosy teorii rasprostraneniya voln. 45, Zap. nauch. sem. POMI, 438, POMI, SPb., 2015, 7–21 | MR
[8] V. M. Babich, V. S. Buldyrev, Asimptoticheskie metody v zadachakh difraktsii korotkikh voln, Nauka, M., 1972, 456 pp. ; V. M. Babič, V. S. Buldyrev, Short-wavelength diffraction theory. Asymptotic methods, Springer Ser. Wave Phenomena, 4, Springer-Verlag, Berlin, 1991, xi+445 pp. | MR | Zbl | MR | Zbl
[9] C. Bardos, M. I. Belyshev, “The wave shaping problem”, Partial differential equations and functional analysis, Progr. Nonlinear Differential Equations Appl., 22, Birkhäuser Boston, Boston, MA, 1996, 41–59 | MR | Zbl
[10] C. Bardos, L. Lebeau, J. Rauch, “Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary”, SIAM J. Control Optim., 30:5 (1992), 1024–1065 | DOI | MR | Zbl
[11] M. I. Belishev, “Ob odnom podkhode k mnogomernym obratnym zadacham dlya volnovogo uravneniya”, Dokl. AN SSSR, 297:3 (1987), 524–527 ; M. I. Belishev, “On an approach to multidimensional inverse problems for the wave equation”, Soviet Math. Dokl., 36:3 (1988), 481–484 | MR | Zbl
[12] M. I. Belishev, “Uravneniya tipa Gelfanda–Levitana v mnogomernoi obratnoi zadache dlya volnovogo uravneniya”, Matematicheskie voprosy teorii rasprostraneniya voln. 17, Zap. nauch. sem. LOMI, 165, Izd-vo “Nauka”, Leningr. otd., L., 1987, 15–20 ; M. I. Belishev, “Equations of the Gel'fand–Levitan type in a multidimensional inverse problem for the wave equation”, J. Soviet Math., 50:6 (1990), 1940–1944 | MR | Zbl | DOI
[13] M. I. Belishev, “Volnovye bazisy v mnogomernykh obratnykh zadachakh”, Matem. sb., 180:5 (1989), 584–602 ; M. I. Belishev, “Wave bases in multidimensional inverse problems”, Math. USSR-Sb., 67:1 (1990), 23–42 | MR | Zbl | DOI
[14] M. I. Belishev, Granichnoe upravlenie i prodolzhenie volnovykh polei, Preprint P-1-90, LOMI, L., 1990
[15] M. I. Belishev, “K obosnovaniyu pravila Gyuigensa”, Matematicheskie voprosy teorii rasprostraneniya voln. 24, Zap. nauch. sem. POMI, 218, POMI, SPb., 1994, 17–24 ; M. I. Belishev, “Justification of Huygens' rule”, J. Math. Sci. (N. Y.), 86:3 (1997), 2667–2672 | MR | Zbl | DOI
[16] M. I. Belishev, “Konservativnaya model dissipativnoi dinamicheskoi sistemy”, Matematicheskie voprosy teorii rasprostraneniya voln. 25, Zap. nauch. sem. POMI, 230, POMI, SPb., 1995, 21–35 ; M. I. Belishev, “The conservative model of a dissipative dynamical system”, J. Math. Sci. (N. Y.), 91:2 (1998), 2711–2721 | MR | Zbl | DOI
[17] M. I. Belishev, “O edinstvennosti vosstanovleniya mladshikh chlenov volnovogo uravneniya po dinamicheskim granichnym dannym (BC-metod)”, Kraevye zadachi matematicheskoi fiziki i smezhnye voprosy teorii funktsii. 29, Zap. nauch. sem. POMI, 249, POMI, SPb., 1997, 55–76 ; M. I. Belishev, “On a unique recovery of lower-order terms in the wave equation from dynamical boundary measurements”, J. Math. Sci. (N. Y.), 101:5 (2000), 3408–3421 | MR | Zbl | DOI
[18] M. I. Belishev, “Boundary control in reconstruction of manifolds and metrics (the BC method)”, Inverse Problems, 13:5 (1997), R1–R45 | DOI | MR | Zbl
[19] M. I. Belishev, “Dynamical systems with boundary control: models and characterization of inverse data”, Inverse Problems, 17:4 (2001), 659–682 | DOI | MR | Zbl
[20] M. I. Belishev, “Ob unitarnom preobrazovanii v prostranstve $L_2(\Omega;\mathbb R^3)$, svyazannom s razlozheniem Veilya”, Matematicheskie voprosy teorii rasprostraneniya voln. 30, Zap. nauch. sem. POMI, 275, POMI, SPb., 2001, 25–40 ; M. I. Belishev, “On a unitary transform in the space $L_2(\Omega,\mathbb R^3)$ connected with the Weyl decomposition”, J. Math. Sci. (N. Y.), 117:2 (2003), 3900–3909 | MR | Zbl | DOI
[21] M. I. Belishev, “How to see waves under the Earth surface (the BC-method for geophysicists)”, Ill-posed and inverse problems, VSP, Zeist, 2002, 67–84 | MR | Zbl
[22] M. I. Belishev, “The Calderon problem for two-dimensional manifolds by the BC-method”, SIAM J. Math. Anal., 35:1 (2003), 172–182 | DOI | MR | Zbl
[23] M. I. Belishev, “O svyazi dannykh dinamicheskikh i spektralnykh obratnykh zadach”, Matematicheskie voprosy teorii rasprostraneniya voln. 32, Zap. nauch. sem. POMI, 297, POMI, SPb., 2003, 30–48 ; M. I. Belishev, “Relations between the data of dynamical and spectral inverse problems”, J. Math. Sci. (N. Y.), 127:6 (2005), 2353–2363 | MR | Zbl | DOI
[24] M. I. Belishev, “Boundary spectral inverse problem on a class of graphs (trees) by the BC-method”, Inverse Problems, 20:3 (2004), 647–672 | DOI | MR | Zbl
[25] M. I. Belishev, “Some remarks on impedance tomography problem for 3d-manifolds”, CUBO, 7:1 (2005), 43–55 | MR | Zbl
[26] M. I. Belishev, “Boundary control method and inverse problems of wave propagation”, Encyclopedia of mathematical physics, v. 1, Academic Press/Elsevier Science, Oxford, 2006, 340–345 | MR | Zbl
[27] M. I. Belishev, “Dynamical inverse problem for a Lamé type system”, J. Inverse Ill-Posed Probl., 14:8 (2006), 751–766 | DOI | MR | Zbl
[28] M. I. Belishev, “Recent progress in the boundary control method”, Inverse Problems, 23:5 (2007), R1–R67 | DOI | MR | Zbl
[29] M. I. Belishev, “Dynamical inverse problem for the equation $u_{tt}-\Delta u-\nabla \ln\rho \cdot \nabla u=0$ (the BC-Method)”, CUBO, 10:2 (2008), 15–30 | MR | Zbl
[30] M. Belishev, “Geometrization of rings as a method for solving inverse problems”, Sobolev spaces in mathematics. III, Int. Math. Ser. (N. Y.), 10, Springer, New York, 2009, 5–24 | DOI | MR | Zbl
[31] M. I. Belishev, “O rekonstruktsii rimanova mnogoobraziya po granichnym dannym: teoriya i plan chislennogo eksperimenta”, Matematicheskie voprosy teorii rasprostraneniya voln. 40, Zap. nauch. sem. POMI, 380, POMI, SPb., 2010, 8–30 ; M. I. Belishev, “On the reconstruction of a Riemannian manifold from boundary data: the theory and plan of a numerical experiment”, J. Math. Sci. (N. Y.), 175:6 (2011), 623–636 | MR | Zbl | DOI
[32] M. I. Belishev, “Opredelenie rasstoyanii do virtualnogo istochnika po dinamicheskim granichnym dannym”, Matematicheskie voprosy teorii rasprostraneniya voln. 41, Zap. nauch. sem. POMI, 393, POMI, SPb., 2011, 29–45 ; M. I. Belishev, “Determination of distances to a virtual source through dynamical boundary data”, J. Math. Sci. (N. Y.), 185:4 (2012), 526–535 | MR | Zbl | DOI
[33] M. I. Belishev, “Boundary control method in dynamical inverse problems – an introductory course”, Dynamical inverse problems: theory and application, CISM Courses and Lect., 529, Springer, Vienna, 2011, 85–150 | DOI | MR | Zbl
[34] M. I. Belishev, “A unitary invariant of a semi-bounded operator in reconstruction of manifolds”, J. Operator Theory, 69:2 (2013), 299–326 | DOI | MR | Zbl
[35] M. I. Belishev, “Algebras in reconstruction of manifolds”, Spectral theory and partial differential equations, Contemp. Math., 640, Amer. Math. Soc., Providence, RI, 2015, 1–12 | DOI | MR | Zbl
[36] M. I. Belishev, “Boundary control method”, Encyclopedia of applied and computational mathematics, v. 1, Springer, Heidelberg, 2015, 142–146 | DOI
[37] M. I. Belishev, “Ob algebrakh trekhmernykh kvaternionnykh garmonicheskikh polei”, Matematicheskie voprosy teorii rasprostraneniya voln. 46, Zap. nauch. sem. POMI, 451, POMI, SPb., 2016, 14–28 ; M. I. Belishev, On algebras of three-dimensional quaternionic harmonic fields, 2017 (v1 – 2016), 15 pp., arXiv: 1611.08523v2 | MR
[38] M. I. Belishev, A. S. Blagoveschenskii, Dinamicheskie obratnye zadachi teorii voln, SPbGU, SPb., 1999, 268 pp.
[39] M. I. Belishev, M. N. Demchenko, “Time-optimal reconstruction of Riemannian manifold via boundary electromagnetic measurements”, J. Inverse Ill-Posed Probl., 19:2 (2011), 167–188 | DOI | MR | Zbl
[40] M. I. Belishev, M. N. Demchenko, “Dinamicheskaya sistema s granichnym upravleniem, svyazannaya s simmetricheskim poluogranichennym operatorom”, Matematicheskie voprosy teorii rasprostraneniya voln. 42, Zap. nauch. sem. POMI, 409, POMI, SPb., 2012, 17–39 ; M. I. Belishev, M. N. Demchenko, “Dynamical system with boundary control associated with a symmetric semibounded operator”, J. Math. Sci. (N. Y.), 194:1 (2013), 8–20 | MR | Zbl | DOI
[41] M. I. Belishev, M. N. Demchenko, “Elements of noncommutative geometry in inverse problems on manifolds”, J. Geom. Phys., 78 (2014), 29–47 | DOI | MR | Zbl
[42] M. I. Belishev, M. N. Demchenko, A. N. Popov, “Nekommutativnaya geometriya i tomografiya mnogoobrazii”, Tr. MMO, 75, no. 2, MTsNMO, M., 2014, 159–180 | MR | Zbl
[43] M. I. Belishev, V. G. Fomenko, “O dostizhimykh mnozhestvakh dinamicheskoi sistemy tipa Lame”, Problemy matem. analiza, 70, Tamara Rozhkovskaya, Novosibirsk, 2013, 57–70 | MR | Zbl
[44] M. I. Belishev, A. K. Glasman, “Dinamicheskaya obratnaya zadacha dlya sistemy Maksvella: vosstanovlenie skorosti v regulyarnoi zone (BC-metod)”, Algebra i analiz, 12:2 (2000), 131–187 ; M. I. Belishev, A. K. Glasman, “Dynamical inverse problem for the Maxwell system: recovering the velocity in the regular zone (the BC-method)”, St. Petersburg Math. J., 12:2 (2001), 279–316 | MR | Zbl
[45] M. I. Belishev, V. Yu. Gotlib, “Dynamical variant of the BC-method: theory and numerical testing”, J. Inverse Ill-Posed Probl., 7:3 (1999), 221–240 | DOI | MR | Zbl
[46] M. I. Belishev, I. B. Ivanov, I. V. Kubyshkin, V. S. Semenov, “Numerical testing in determination of sound speed from a part of boundary by the BC-method”, J. Inverse Ill-Posed Probl., 24:2 (2016), 159–180 | DOI | MR | Zbl
[47] M. I. Belishev, A. P. Kachalov, “Granichnoe upravlenie i kvazifotony v zadache rekonstruktsii rimanova mnogoobraziya po dinamicheskim dannym”, Matematicheskie voprosy teorii rasprostraneniya voln. 22, Zap. nauch. sem. POMI, 203, Nauka, SPb., 1992, 21–51 ; M. I. Belishev, A. P. Kachalov, “Boundary control and quasiphotones in the problem of reconstruction of a Riemannian manifold via dynamical data”, J. Math. Sci. (N. Y.), 79:4 (1996), 1172–1190 | MR | Zbl | DOI
[48] M. I. Belishev, A. P. Kachalov, “Operatornyi integral v mnogomernoi spektralnoi obratnoi zadache”, Differentsialnaya geometriya, gruppy Li i mekhanika. 14, Zap. nauch. sem. POMI, 215, Nauka, SPb., 1994, 9–37 ; M. I. Belishev, A. P. Kachalov, “An operator integral in a multidimensional spectral inverse problem”, J. Math. Sci. (N. Y.), 85:1 (1997), 1559–1577 | MR | Zbl | DOI
[49] M. I. Belishev, Ya. V. Kurylev, “To the reconstruction of a Riemannian manifold via its spectral data (BC-method)”, Comm. Partial Differential Equations, 17:5-6 (1992), 767–804 | DOI | MR | Zbl
[50] M. I. Belishev, I. Lasiecka, “The dynamical Lamé system: regularity of solutions, boundary controllability and boundary data continuation”, ESAIM Control Optim. Calc. Var., 8 (2002), 143–167 | DOI | MR | Zbl
[51] M. I. Belishev, V. S. Mikhailov, “Unified approach to classical equations of inverse problem theory”, J. Inverse Ill-Posed Probl., 20:4 (2012), 461–488 | DOI | MR | Zbl
[52] M. I. Belishev, V. S. Mikhailov, “Inverse problem for a one-dimensional dynamical Dirac system (BC-method)”, Inverse Problems, 30:12 (2014), 125013, 26 pp. | DOI | MR | Zbl
[53] M. I. Belishev, A. L. Pestov, “Kharakterizatsiya dannykh obratnoi zadachi dlya odnomernoi dvukhskorostnoi dinamicheskoi sistemy”, Algebra i analiz, 26:3 (2014), 89–130 ; M. I. Belishev, A. L. Pestov, “Characterization of the inverse problem data for one-dimensional two-velocity dynamical system”, St. Petersburg Math. J., 26:3 (2015), 411–440 | MR | Zbl | DOI
[54] M. I. Belishev, A. B. Pushnitskii, “K treugolnoi faktorizatsii polozhitelnykh operatorov”, Matematicheskie voprosy teorii rasprostraneniya voln. 26, Zap. nauch. sem. POMI, 239, POMI, SPb., 1997, 45–60 ; M. I. Belishev, A. B. Pushnitskii, “On the triangular factorization of positive operators”, J. Math. Sci. (N. Y.), 96:4 (1999), 3312–3320 | MR | Zbl | Zbl
[55] M. Belishev, V. Sharafutdinov, “Dirichlet to Neumann operator on differential forms”, Bull. Sci. Math., 132:2 (2008), 128–145 | DOI | MR | Zbl
[56] M. I. Belishev, S. A. Simonov, “Volnovaya model operatora Shturma–Liuvillya na poluosi”, Algebra i analiz, 29:2 (2017), 3–33
[57] M. I. Belishev, A. F. Vakulenko, “Inverse problems on graphs: recovering the tree of strings by the BC-method”, J. Inverse Ill-Posed Probl., 14:1 (2006), 29–46 | DOI | MR | Zbl
[58] M. I. Belishev, A. F. Vakulenko, “Inverse scattering problem for the wave equation with locally perturbed centrifugal potential”, J. Inverse Ill-Posed Probl., 17:2 (2009), 127–157 | DOI | MR | Zbl
[59] M. I. Belishev, A. F. Vakulenko, “$s$-points in three-dimensional acoustical scattering”, SIAM J. Math. Anal., 42:6 (2010), 2703–2720 | DOI | MR | Zbl
[60] M. I. Belishev, A. F. Vakulenko, “On characterization of inverse data in the boundary control method”, Rend. Istit. Mat. Univ. Trieste, 48 (2016), 49–77 | DOI | MR | Zbl
[61] M. I. Belishev, N. Wada, “On revealing graph cycles via boundary measurements”, Inverse Problems, 25:10 (2009), 105011, 21 pp. | DOI | MR | Zbl
[62] M. I. Belishev, N. Wada, “A $C^*$-algebra associated with dynamics on a graph of strings”, J. Math. Soc. Japan, 67:3 (2015), 1239–1274 | DOI | MR | Zbl
[63] G. Birkgof, Teoriya reshetok, Nauka, M., 1984, 566 pp. ; G. Birkhoff, Lattice theory, Amer. Math. Soc. Colloq. Publ., 25, 3rd ed., Amer. Math. Soc., Providence, RI, 1967, vi+418 pp. | MR | Zbl | MR | Zbl
[64] M. Sh. Birman, M. Z. Solomyak, Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, 2-e izd., ispr. i dop., Lan, SPb.–M.–Krasnodar, 2010, 464 pp.; M. Sh. Birman, M. Z. Solomjak, Spectral theory of self-adjoint operators in Hilbert space, Math. Appl. (Soviet Ser.), 5, D. Reidel Publ. Co., Dordrecht, 1987, xv+301 pp. | MR | Zbl
[65] A. S. Blagoveschenskii, “O lokalnom metode resheniya nestatsionarnoi obratnoi zadachi dlya neodnorodnoi struny”, Matematicheskie voprosy teorii difraktsii i rasprostraneniya voln. 1, Tr. MIAN SSSR, 115, Nauka, L., 1971, 28–38 | MR | Zbl
[66] A. S. Blagoveshchenskii, Inverse problems of wave processes, Inverse Ill-posed Probl. Ser., 23, VSP, Utrecht, 2001, 137 pp.
[67] A. Connes, “On the spectral characterization of manifolds”, J. Noncommut. Geom., 7:1 (2013), 1–82 | DOI | MR | Zbl
[68] M. N. Demchenko, “O chastichno izometricheskom preobrazovanii solenoidalnykh vektornykh polei”, Kraevye zadachi matematicheskoi fiziki i smezhnye voprosy teorii funktsii. 40, Zap. nauch. sem. POMI, 370, POMI, SPb., 2009, 22–43 ; M. N. Demchenko, “On a partially isometric transform of divergence-free vector fields”, J. Math. Sci. (N. Y.), 166:1 (2010), 11–22 | MR | Zbl | DOI
[69] M. N. Demchenko, “Dinamicheskaya trekhmernaya obratnaya zadacha dlya sistemy Maksvella”, Algebra i analiz, 23:6 (2011), 32–79 ; M. N. Demchenko, “The dynamical 3-dimensional inverse problem for the Maxwell system”, St. Petersburg Math. J., 23:6 (2012), 943–975 | MR | Zbl | DOI
[70] D. Dos Santos Ferreira, Ya. Kurylev, M. Lassas, M. Salo, “The Calderón problem in transversally anisotropic geometries”, J. Eur. Math. Soc. (JEMS), 18:11 (2016), 2579–2626 | DOI | MR | Zbl
[71] M. Eller, “Symmetric hyperbolic systems with boundary conditions that do not satisfy the Kreiss–Sakamoto condition”, Appl. Math. (Warsaw), 35:3 (2008), 323–333 | DOI | MR | Zbl
[72] M. Eller, V. Isakov, G. Nakamura, D. Tataru, “Uniqueness and stability in the Cauchy problem for Maxwell and elasticity systems”, Nonlinear partial differential equations and their applications, Collège de France seminar, vol. 14 (Paris, 1997/1998), Stud. Math. Appl., 31, North-Holland, Amsterdam, 2002, 329–349 | MR | Zbl
[73] G. Eskin, “Inverse hyperbolic problems with time-dependent coefficients”, Comm. Partial Differential Equations, 32:10-12 (2007), 1737–1758 | DOI | MR | Zbl
[74] G. Eskin, “Optical Aharonov–Bohm effect: an inverse hyperbolic problems approach”, Comm. Math. Phys., 284:2 (2008), 317–343 | DOI | MR | Zbl
[75] G. Eskin, “Inverse problems for general second order hyperbolic equations with time-dependent coefficients”, Bull. Math. Sci. (to appear) ; 2017 (v1 – 2015), 71 pp., arXiv: 1503.00825 | DOI
[76] L. D. Faddeev, “Obratnaya zadacha kvantovoi teorii rasseyaniya. II”, Itogi nauki i tekhn. Ser. Sovrem. probl. matem., 3, VINITI, M., 1974, 93–180 ; L. D. Faddeev, “Inverse problem of quantum scattering theory. II”, J. Soviet Math., 5:3 (1976), 334–396 | MR | Zbl | DOI
[77] V. G. Fomenko, “Operator reaktsii sistemy Lame”, Ckladni cistemi i protsesi, 1(17) (2010), 13–18
[78] V. G. Fomenko, “Dinamicheskaya obratnaya zadacha dlya sistemy tipa Lame (BC-metod)”, Matematicheskie voprosy teorii rasprostraneniya voln. 44, Posvyaschaetsya stoletiyu so dnya rozhdeniya Georgiya Ivanovicha Petrashenya, Zap. nauch. sem. POMI, 426, POMI, SPb., 2014, 218–259 ; V. G. Fomenko, “The dynamical inverse problem for a Lamé type system (the BC method)”, J. Math. Sci. (N. Y.), 214:3 (2016), 392–421 | MR | Zbl | DOI
[79] V. G. Fomenko, Dinamicheskaya obratnaya zadacha dlya sistemy tipa Lame (BC-metod), Diss. ... kand. fiz.-matem. nauk, SPbGU, SPb., 2016, 86 pp.
[80] I. Ts. Gokhberg, M. G. Krein, Teoriya volterrovykh operatorov v gilbertovom prostranstve i ee prilozheniya, Nauka, M., 1967, 508 pp. ; I. Ts. Gohberg, M. G. Krein, Theory and applications of Volterra operators in Hilbert space, Transl. Math. Monogr., 24, Amer. Math. Soc., Providence, RI, 1970, x+430 pp. | MR | Zbl | MR | Zbl
[81] D. Gromoll, W. Klingenberg, W. Meyer, Riemannische Geometrie im Grossen, Lecture Notes in Math., 55, Springer-Verlag, Berlin–New York, 1968, vi+287 pp. | MR | Zbl
[82] G. Henkin, V. Michel, “On the explicit reconstruction of a Riemann surface from its Dirichlet–Neumann operator”, Geom. Funct. Anal., 17:1 (2007), 116–155 | DOI | MR | Zbl
[83] M. Ikawa, Hyperbolic partial differential equations and wave phenomena, Transl. from the Japanese, Transl. Math. Monogr., 189, Amer. Math. Soc., Providence, RI, 2000, xxii+190 pp. | MR | Zbl
[84] M. I. Isaev, R. G. Novikov, “Effectivized Hölder-logarithmic stability estimates for the Gel'fand inverse problem”, Inverse Problems, 30:9 (2014), 095006, 18 pp. | DOI | MR | Zbl
[85] V. Isakov, Inverse problems for partial differential equations, Appl. Math. Sci., 127, Springer-Verlag, New York, 1998, xii+284 pp. | DOI | MR | Zbl
[86] I. B. Ivanov, M. I. Belishev, V. S. Semenov, The reconstruction of sound speed in the Marmousi model by the boundary control method, 2016, 27 pp., arXiv: 1609.07586
[87] R. Kalman, P. Falb, M. Arbib, Ocherki po matematicheskoi teorii sistem, Mir, M., 1971, 400 pp. ; R. E. Kalman, P. L. Falb, M. A. Arbib, Topics in mathematical system theory, McGraw-Hill Book Co., New York–Toronto, ON–London, 1969, xiv+358 pp. | MR | Zbl | MR | Zbl
[88] C. E. Kenig, M. Salo, G. Uhlmann, “Reconstructions from boundary measurements on admissible manifolds”, Inverse Probl. Imaging, 5:4 (2011), 859–877 | DOI | MR | Zbl
[89] A. N. Kolmogorov, S. V. Fomin, Elementy teorii funktsii i funktsionalnogo analiza, 4-e pererab. izd., Nauka, M., 1976, 543 pp. ; A. N. Kolmogorov, S. V. Fomin, Elements of the theory of functions and functional analysis, v. I, II, Graylock Press, Albany, NY, 1957, 1961, ix+129 pp., ix+128 pp. | MR | Zbl | MR | MR | Zbl
[90] I. Lasiecka, J.-L. Lions, R. Triggiani, “Non homogeneous boundary value problems for second order hyperbolic operators”, J. Math. Pures Appl. (9), 65:2 (1986), 149–192 | MR | Zbl
[91] I. Lasiecka, R. Triggiani, “Recent advances in regularity of second-order hyperbolic mixed problems, and applications”, Dynam. Report. Expositions Dynam. Systems (N. S.), 3, Springer-Verlag, Berlin, 1994, 104–162 | DOI | Zbl
[92] M. Lassas, G. Uhlmann, “On determining a Riemannian manifold from the Dirichlet-to-Neumann map”, Ann. Sci. École Norm. Sup. (4), 34:5 (2001), 771–787 | DOI | MR | Zbl
[93] A. S. Mikhaylov, V. S. Mikhaylov, “Dynamical inverse problem for the discrete Schrödinger operator”, Nanosystems: Phys., Chem., Math., 7:5 (2016), 842–853 | DOI | Zbl
[94] A. S. Mikhaylov, V. S. Mikhaylov, “Connection of the different types of inverse data for the one-dimensional Schrödinger operator on the half-line”, Matematicheskie voprosy teorii rasprostraneniya voln. 46, Zap. nauch. sem. POMI, 451, POMI, SPb., 2016, 134–155 | MR
[95] A. S. Mikhaylov, V. S. Mikhaylov, Boundary control method and De Branges spaces. Schrödinger equation, Dirac system and discrete Schrödinger operator, 2017, 21 pp., arXiv: 1701.08424v1
[96] M. A. Naimark, Normirovannye koltsa, 2-e izd., Nauka, M., 1968, 664 pp. ; M. A. Naimark, Normed rings, Wolters-Noordhoff Publ., Groningen, 1970, xvi+572 pp. | MR | Zbl | MR | Zbl
[97] L. P. Nizhnik, Obratnye zadachi rasseyaniya dlya giperbolicheskikh uravnenii, Naukova dumka, Kiev, 1991, 232 pp. | MR | Zbl
[98] R. G. Novikov, G. M. Khenkin, “$\bar\partial$-uravnenie v mnogomernoi obratnoi zadache rasseyaniya”, UMN, 42:3(255) (1987), 93–152 | MR | Zbl
[99] L. Pestov, “Inverse problem of determining absorption coefficient in the wave equation by BC method”, J. Inverse Ill-Posed Probl., 20:1 (2012), 103–110 | DOI | MR | Zbl
[100] L. Pestov, “On determining an absorption coefficient and a speed of sound in the wave equation by the BC method”, J. Inverse Ill-Posed Probl., 22:2 (2014), 245–250 | DOI | MR | Zbl
[101] V. G. Romanov, Investigation methods for inverse problems, Inverse Ill-posed Probl. Ser., VSP, Utrecht, 2002, xii+280 pp. | DOI | MR | Zbl
[102] V. G. Romanov, Ustoichivost v obratnykh zadachakh, Nauchnyi mir, M., 2005, viii+296 pp. | MR | Zbl
[103] G. Schwarz, Hodge decomposition – a method for solving boundary value problems, Lecture Notes in Math., 1607, Springer–Verlag, Berlin, 1995, viii+155 pp. | DOI | MR | Zbl
[104] I. R. Shafarevich, Osnovnye ponyatiya algebry, 2-e izd., ispr. i dop., RKhD, M.–Izhevsk, 2001, 350 pp. ; I. R. Shafarevich, Basic notions of algebra, Encyclopaedia Math. Sci., 11, Algebra, 1, Springer, Berlin, 2005, ii+258 pp. | Zbl | DOI | MR | Zbl
[105] E. Sincich, S. Vessella, “Wave equation with Robin condition, quantitative estimates of strong unique continuation at the boundary”, Rend. Istit. Mat. Univ. Trieste, 48 (2016), 221–243 | DOI | MR | Zbl
[106] D. Tataru, “Unique continuation for solutions to PDE's: between Hormander's and Holmgren's theorem”, Comm. Partial Differential Equations, 20:5-6 (1995), 855–884 | DOI | MR | Zbl
[107] B. R. Vainberg, Asimptoticheskie metody v uravneniyakh matematicheskoi fiziki, MGU, M., 1982, 295 pp. ; B. Vainberg, Asymptotic methods in equations of mathematical physics, Gordon and Breach Sci. Publ., New York, 1989, viii+498 pp. | MR | Zbl | MR | Zbl
[108] S. Vessella, “Stability estimates for an inverse hyperbolic initial boundary value problem with unknown boundaries”, SIAM J. Math. Anal., 47:2 (2015), 1419–1457 | DOI | MR | Zbl