Pseudotoric structures: Lagrangian submanifolds and Lagrangian fibrations
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 72 (2017) no. 3, pp. 513-546 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This survey presents a generalization of the notion of a toric structure on a compact symplectic manifold: the notion of a pseudotoric structure. The language of these new structures appears to be a convenient and natural tool for describing many non-standard Lagrangian submanifolds and cycles (Chekanov's exotic tori, Mironov's cycles in certain particular cases, and others) as well as for constructing Lagrangian fibrations (for example, special fibrations in the sense of Auroux on Fano varieties). Known properties of pseudotoric structures and constructions based on these properties are discussed, as well as open problems whose solution may be of importance in symplectic geometry and mathematical physics. Bibliography: 28 titles.
Keywords: symplectic manifold, Lagrangian submanifold, Lagrangian fibration, toric manifold, exotic Lagrangian tori.
Mots-clés : Delzant polytope
@article{RM_2017_72_3_a3,
     author = {N. A. Tyurin},
     title = {Pseudotoric structures: {Lagrangian~submanifolds} and {Lagrangian} fibrations},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {513--546},
     year = {2017},
     volume = {72},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2017_72_3_a3/}
}
TY  - JOUR
AU  - N. A. Tyurin
TI  - Pseudotoric structures: Lagrangian submanifolds and Lagrangian fibrations
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2017
SP  - 513
EP  - 546
VL  - 72
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/RM_2017_72_3_a3/
LA  - en
ID  - RM_2017_72_3_a3
ER  - 
%0 Journal Article
%A N. A. Tyurin
%T Pseudotoric structures: Lagrangian submanifolds and Lagrangian fibrations
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2017
%P 513-546
%V 72
%N 3
%U http://geodesic.mathdoc.fr/item/RM_2017_72_3_a3/
%G en
%F RM_2017_72_3_a3
N. A. Tyurin. Pseudotoric structures: Lagrangian submanifolds and Lagrangian fibrations. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 72 (2017) no. 3, pp. 513-546. http://geodesic.mathdoc.fr/item/RM_2017_72_3_a3/

[1] R. Vianna, “Infinitely many exotic monotone Lagrangian tori in $\mathbb{C}\mathbb{P}^2$”, J. Topol., 9:2 (2016), 535–551 | DOI | MR | Zbl

[2] N. A. Tyurin, “Geometric quantization and algebraic Lagrangian geometry”, Surveys in geometry and number theory: reports on contemporary Russian mathematics, London Math. Soc. Lecture Note Ser., 338, Cambridge Univ. Press, Cambridge, 2007, 279–318 | DOI | MR

[3] A. L. Gorodentsev, A. N. Tyurin, “Abelian Lagrangian algebraic geometry”, Izv. Math., 65:3 (2001), 437–467 | DOI | DOI | MR | Zbl

[4] T. Delzant, “Hamiltoniens périodiques et images convexes de l'application moment”, Bull. Soc. Math. France, 116:3 (1988), 315–339 | DOI | MR | Zbl

[5] M. Audin, Torus action on symplectic manifolds, Progr. Math., 93, 2nd rev. ed., Birkhäuser Verlag, Basel, 2004, viii+325 pp. | DOI | MR | Zbl

[6] Yu. V. Chekanov, “Lagrangian tori in a symplectic vector space and global symplectomorphisms”, Math. Z., 223:4 (1996), 547–559 | DOI | MR | Zbl

[7] Yu. Chekanov, F. Schlenk, “Notes on monotone Lagrangian twist tori”, Electron. Res. Announc. Math. Sci., 17 (2010), 104–121 | DOI | MR | Zbl

[8] V. M. Buchstaber, T. E. Panov, “Torus actions, combinatorial topology, and homological algebra”, Russian Math. Surveys, 55:5 (2000), 825–921 | DOI | DOI | MR | Zbl

[9] V. M. Buchstaber, T. E. Panov, Toric topology, Math. Surveys Monogr., 204, Amer. Math. Soc., Providence, RI, 2015, xiv+518 pp. | DOI | MR | Zbl

[10] I. M. Gel'fand, V. V. Serganova, “Combinatorial geometries and torus strata on homogeneous compact manifolds”, Russian Math. Surveys, 42:2 (1987), 133–168 | DOI | MR | Zbl

[11] N. A. Tyurin, “Pseudotoric Lagrangian fibrations of toric and nontoric Fano varieties”, Theoret. and Math. Phys., 162:3 (2010), 255–275 | DOI | DOI | MR | Zbl

[12] S. A. Belev, N. A. Tyurin, “Nontoric foliations by Lagrangian tori of toric Fano varieties”, Math. Notes, 87:1 (2010), 43–51 | DOI | DOI | MR | Zbl

[13] N. A. Tyurin, “Special Lagrangian fibrations on the flag variety $F^3$”, Theoret. and Math. Phys., 167:2 (2011), 567–576 | DOI | DOI | MR | Zbl

[14] N. A. Tyurin, “Nonstandard Lagrangian tori and pseudotoric structures”, Theoret. and Math. Phys., 171:2 (2012), 700–703 | DOI | DOI | MR | Zbl

[15] S. A. Belev, N. A. Tyurin, “Lifts of Lagrangian tori”, Math. Notes, 91:5 (2012), 735–737 | DOI | DOI | MR | Zbl

[16] S. A. Belyov, N. A. Tyurin, “Pseudotoric structures on toric symplectic manifolds”, Theoret. and Math. Phys., 175:2 (2013), 571–579 | DOI | DOI | MR | Zbl

[17] N. A. Tyurin, “Pseudotoric structures and Lagrangian spheres in the flag variety $F^3$”, Math. Notes, 96:3 (2014), 458–461 | DOI | DOI | MR | Zbl

[18] N. A. Tyurin, “Pseudotoric structures on a hyperplane section of a toric manifold”, Theoret. and Math. Phys., 182:2 (2015), 159–172 | DOI | DOI | MR | Zbl

[19] N. A. Tyurin, “On Lagrangian spheres in the flag variety $F^3$”, Math. Notes, 98:2 (2015), 348–351 | DOI | DOI | MR | Zbl

[20] P. Griffiths, J. Harris, Principles of algebraic geometry, Pure Appl. Math., Wiley-Interscience [John Wiley Sons], New York, 1978, xii+813 pp. | MR | MR | Zbl | Zbl

[21] N. Woodhouse, Geometric quantization, Oxford Math. Monogr., The Clarendon Press, Oxford Univ. Press, New York, 1980, xi+316 pp. | MR | Zbl

[22] N. N. Nekhoroshev, “Action-angle variables and their generalizations”, Trans. Moscow Math. Soc., 26(1972) (1974), 180–198 | MR | Zbl

[23] N. N. Nekhoroshev, “Fractional monodromy in the case of arbitrary resonances”, Sb. Math., 198:3 (2007), 383–424 | DOI | DOI | MR | Zbl

[24] D. Auroux, “Mirror symmetry and $T$-duality in the complement of an anticanonical divisor”, J. Gökova Geom. Topol. GGT, 1 (2007), 51–91 | MR | Zbl

[25] V. Guillemin, S. Sternberg, “The Gelfand–Cetlin system and quantization of the complex flag manifolds”, J. Funct. Anal., 52:1 (1983), 106–128 | DOI | MR | Zbl

[26] T. Nishinou, Y. Nohara, K. Ueda, “Toric degenerations of Gelfand–Cetlin systems and potential functions”, Adv. Math., 224:2 (2010), 648–706 | DOI | MR | Zbl

[27] A. E. Mironov, “New examples of Hamilton-minimal and minimal Lagrangian manifolds in $\mathbb C^n$ and $\mathbb C\mathrm P^n$”, Sb. Math., 195:1 (2004), 85–96 | DOI | DOI | MR | Zbl

[28] A. E. Mironov, T. E. Panov, “Intersections of quadrics, moment-angle manifolds, and Hamiltonian-minimal Lagrangian embeddings”, Funct. Anal. Appl., 47:1 (2013), 38–49 | DOI | DOI | MR | Zbl