Mots-clés : Delzant polytope
@article{RM_2017_72_3_a3,
author = {N. A. Tyurin},
title = {Pseudotoric structures: {Lagrangian~submanifolds} and {Lagrangian} fibrations},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {513--546},
year = {2017},
volume = {72},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2017_72_3_a3/}
}
N. A. Tyurin. Pseudotoric structures: Lagrangian submanifolds and Lagrangian fibrations. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 72 (2017) no. 3, pp. 513-546. http://geodesic.mathdoc.fr/item/RM_2017_72_3_a3/
[1] R. Vianna, “Infinitely many exotic monotone Lagrangian tori in $\mathbb{C}\mathbb{P}^2$”, J. Topol., 9:2 (2016), 535–551 | DOI | MR | Zbl
[2] N. A. Tyurin, “Geometric quantization and algebraic Lagrangian geometry”, Surveys in geometry and number theory: reports on contemporary Russian mathematics, London Math. Soc. Lecture Note Ser., 338, Cambridge Univ. Press, Cambridge, 2007, 279–318 | DOI | MR
[3] A. L. Gorodentsev, A. N. Tyurin, “Abelian Lagrangian algebraic geometry”, Izv. Math., 65:3 (2001), 437–467 | DOI | DOI | MR | Zbl
[4] T. Delzant, “Hamiltoniens périodiques et images convexes de l'application moment”, Bull. Soc. Math. France, 116:3 (1988), 315–339 | DOI | MR | Zbl
[5] M. Audin, Torus action on symplectic manifolds, Progr. Math., 93, 2nd rev. ed., Birkhäuser Verlag, Basel, 2004, viii+325 pp. | DOI | MR | Zbl
[6] Yu. V. Chekanov, “Lagrangian tori in a symplectic vector space and global symplectomorphisms”, Math. Z., 223:4 (1996), 547–559 | DOI | MR | Zbl
[7] Yu. Chekanov, F. Schlenk, “Notes on monotone Lagrangian twist tori”, Electron. Res. Announc. Math. Sci., 17 (2010), 104–121 | DOI | MR | Zbl
[8] V. M. Buchstaber, T. E. Panov, “Torus actions, combinatorial topology, and homological algebra”, Russian Math. Surveys, 55:5 (2000), 825–921 | DOI | DOI | MR | Zbl
[9] V. M. Buchstaber, T. E. Panov, Toric topology, Math. Surveys Monogr., 204, Amer. Math. Soc., Providence, RI, 2015, xiv+518 pp. | DOI | MR | Zbl
[10] I. M. Gel'fand, V. V. Serganova, “Combinatorial geometries and torus strata on homogeneous compact manifolds”, Russian Math. Surveys, 42:2 (1987), 133–168 | DOI | MR | Zbl
[11] N. A. Tyurin, “Pseudotoric Lagrangian fibrations of toric and nontoric Fano varieties”, Theoret. and Math. Phys., 162:3 (2010), 255–275 | DOI | DOI | MR | Zbl
[12] S. A. Belev, N. A. Tyurin, “Nontoric foliations by Lagrangian tori of toric Fano varieties”, Math. Notes, 87:1 (2010), 43–51 | DOI | DOI | MR | Zbl
[13] N. A. Tyurin, “Special Lagrangian fibrations on the flag variety $F^3$”, Theoret. and Math. Phys., 167:2 (2011), 567–576 | DOI | DOI | MR | Zbl
[14] N. A. Tyurin, “Nonstandard Lagrangian tori and pseudotoric structures”, Theoret. and Math. Phys., 171:2 (2012), 700–703 | DOI | DOI | MR | Zbl
[15] S. A. Belev, N. A. Tyurin, “Lifts of Lagrangian tori”, Math. Notes, 91:5 (2012), 735–737 | DOI | DOI | MR | Zbl
[16] S. A. Belyov, N. A. Tyurin, “Pseudotoric structures on toric symplectic manifolds”, Theoret. and Math. Phys., 175:2 (2013), 571–579 | DOI | DOI | MR | Zbl
[17] N. A. Tyurin, “Pseudotoric structures and Lagrangian spheres in the flag variety $F^3$”, Math. Notes, 96:3 (2014), 458–461 | DOI | DOI | MR | Zbl
[18] N. A. Tyurin, “Pseudotoric structures on a hyperplane section of a toric manifold”, Theoret. and Math. Phys., 182:2 (2015), 159–172 | DOI | DOI | MR | Zbl
[19] N. A. Tyurin, “On Lagrangian spheres in the flag variety $F^3$”, Math. Notes, 98:2 (2015), 348–351 | DOI | DOI | MR | Zbl
[20] P. Griffiths, J. Harris, Principles of algebraic geometry, Pure Appl. Math., Wiley-Interscience [John Wiley Sons], New York, 1978, xii+813 pp. | MR | MR | Zbl | Zbl
[21] N. Woodhouse, Geometric quantization, Oxford Math. Monogr., The Clarendon Press, Oxford Univ. Press, New York, 1980, xi+316 pp. | MR | Zbl
[22] N. N. Nekhoroshev, “Action-angle variables and their generalizations”, Trans. Moscow Math. Soc., 26(1972) (1974), 180–198 | MR | Zbl
[23] N. N. Nekhoroshev, “Fractional monodromy in the case of arbitrary resonances”, Sb. Math., 198:3 (2007), 383–424 | DOI | DOI | MR | Zbl
[24] D. Auroux, “Mirror symmetry and $T$-duality in the complement of an anticanonical divisor”, J. Gökova Geom. Topol. GGT, 1 (2007), 51–91 | MR | Zbl
[25] V. Guillemin, S. Sternberg, “The Gelfand–Cetlin system and quantization of the complex flag manifolds”, J. Funct. Anal., 52:1 (1983), 106–128 | DOI | MR | Zbl
[26] T. Nishinou, Y. Nohara, K. Ueda, “Toric degenerations of Gelfand–Cetlin systems and potential functions”, Adv. Math., 224:2 (2010), 648–706 | DOI | MR | Zbl
[27] A. E. Mironov, “New examples of Hamilton-minimal and minimal Lagrangian manifolds in $\mathbb C^n$ and $\mathbb C\mathrm P^n$”, Sb. Math., 195:1 (2004), 85–96 | DOI | DOI | MR | Zbl
[28] A. E. Mironov, T. E. Panov, “Intersections of quadrics, moment-angle manifolds, and Hamiltonian-minimal Lagrangian embeddings”, Funct. Anal. Appl., 47:1 (2013), 38–49 | DOI | DOI | MR | Zbl