@article{RM_2017_72_3_a2,
author = {V. N. Dubinin},
title = {Geometric estimates for the {Schwarzian} derivative},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {479--511},
year = {2017},
volume = {72},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2017_72_3_a2/}
}
V. N. Dubinin. Geometric estimates for the Schwarzian derivative. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 72 (2017) no. 3, pp. 479-511. http://geodesic.mathdoc.fr/item/RM_2017_72_3_a2/
[1] Z. Nehari, Conformal mapping, McGraw-Hill Book Co., Inc., New York–Toronto–London, 1952, viii+396 pp. ; Dover Publications, Inc., New York, 1975, vii+396 pp. | MR | Zbl | MR
[2] O. Lehto, Univalent functions and Teichmüller spaces, Grad. Texts in Math., 109, Springer-Verlag, New York, 1987, xii+257 pp. | DOI | MR | Zbl
[3] B. Osgood, “Old and new on the Schwarzian derivative”, Quasiconformal mappings and analysis, A collection of papers honoring F. W. Gehring (Ann Arbor, MI, 1995), Springer, New York, 1998, 275–308 | MR | Zbl
[4] M. Chuaqui, P. Duren, W. Ma, D. Mejía, D. Minda, B. Osgood, “Schwarzian norms and two-point distortion”, Pacific J. Math., 254:1 (2011), 101–116 | DOI | MR | Zbl
[5] G. M. Goluzin, Geometric theory of functions of a complex variable, Transl. Math. Monogr., 26, Amer. Math. Soc., Providence, RI, 1969, vi+676 pp. | MR | MR | Zbl | Zbl
[6] W. K. Hayman, Multivalent functions, Cambridge Tracts in Math., 110, 2nd ed., Cambridge Univ. Press, Cambridge, 1994, xii+263 pp. | DOI | MR | Zbl
[7] J. A. Jenkins, Univalent functions and conformal mapping, Ergeb. Math. Grenzgeb. (N. F.), 18, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1958, vi+169 pp. ; 9, No 5, 1997 | MR | Zbl | Zbl | MR | Zbl
[8] G. V. Kuz'mina, “Methods of the geometric theory of functions. I”, St. Petersburg Math. J., 9:3 (1998), 455–507 ; “II”, 9:5 (1998), 889–930 | MR | MR | Zbl | Zbl
[9] V. N. Dubinin, Condenser capacities and symmetrization in geometric function theory, Springer, Basel, 2014, xii+344 pp. ; V. H. Dubinin, Emkosti kondensatorov i simmetrizatsiya v geometricheskoi teorii funktsii kompleksnogo peremennogo, Dalnauka, Vladivostok, 2009, ix+390 pp. | DOI | MR | Zbl
[10] J. B. Garnett, D. E. Marshall, Harmonic measure, New Math. Monogr., 2, Cambridge Univ. Press, Cambridge, 2005, xvi+571 pp. | DOI | MR | Zbl
[11] V. N. Dubinin, “Symmetrization, Green's function, and conformal mappings”, J. Math. Sci. (N. Y.), 89:1 (1998), 967–975 | DOI | MR | Zbl
[12] V. N. Dubinin, “Asymptotics of the module of a degenerating condenser and some of their applications”, J. Math. Sci. (N. Y.), 95:3 (1999), 2209–2220 | DOI | MR | Zbl
[13] V. N. Dubinin, L. V. Kovalev, “The reduced module of the complex sphere”, J. Math. Sci. (N. Y.), 105:4 (2001), 2165–2179 | DOI | MR | Zbl
[14] V. N. Dubinin, N. V. Eyrikh, “Some applications of generalized condensers to analytic function theory”, J. Math. Sci. (N. Y.), 133:6 (2006), 1634–1647 | DOI | MR | Zbl
[15] V. N. Dubinin, “Lower bounds for the half-plane capacity of compact sets and symmetrization”, Sb. Math., 201:11 (2010), 1635–1646 | DOI | DOI | MR | Zbl
[16] V. N. Dubinin, E. G. Prilepkina, “Distortion theorems for univalent meromorphic functions on an annulus”, Sib. Math. J., 51:2 (2010), 229–243 | DOI | MR | Zbl
[17] V. N. Dubinin, D. A. Kirillova, “Nekotorye primeneniya ekstremalnykh razbienii v geometricheskoi teorii funktsii”, Dalnevost. matem. zhurn., 10:2 (2010), 130–152 | MR
[18] V. N. Dubinin, “Steiner symmetrization and the initial coefficients of univalent functions”, Izv. Math., 74:4 (2010), 735–742 | DOI | DOI | MR | Zbl
[19] V. N. Dubinin, M. Vuorinen, “Robin functions and distortion theorems for regular mappings”, Math. Nachr., 283:11 (2010), 1589–1602 | DOI | MR | Zbl
[20] V. N. Dubinin, “Boundary values of the Schwarzian derivative of a regular function”, Sb. Math., 202:5 (2011), 649–663 | DOI | DOI | MR | Zbl
[21] V. N. Dubinin, “Ob odnom klasse odnolistnykh funktsii”, Dalnevost. matem. zhurn., 12:2 (2012), 184–194 | MR | Zbl
[22] V. N. Dubinin, “Bounded holomorphic functions covering no concentric circles”, J. Math. Sci. (N. Y.), 207:6 (2015), 825–831 | DOI | MR | Zbl
[23] V. N. Dubinin, “Dvutochechnaya granichnaya otsenka proizvodnoi Shvartsa golomorfnoi funktsii”, Dalnevost. matem. zhurn., 14:2 (2014), 191–199 | MR | Zbl
[24] V. N. Dubinin, M. Vuorinen, “Ahlfors–Beurling conformal invariant and relative capacity of compact sets”, Proc. Amer. Math. Soc., 142:11 (2014), 3865–3879 | DOI | MR | Zbl
[25] V. N. Dubinin, “Schwarzian derivative and covering arcs of a pencil of circles by holomorphic functions”, Math. Notes, 98:6 (2015), 920–925 | DOI | DOI | MR | Zbl
[26] V. N. Dubinin, “Inequalities for harmonic measures with respect to non-overlapping domains”, Izv. Math., 79:5 (2015), 902–918 | DOI | DOI | MR | Zbl
[27] M. Schiffer, “Some recent developments in the theory of conformal mapping”, Appendix to: R. Courant, Dirichlet's principle, conformal mapping, and minimal surfaces, Interscience Publishers, Inc., New York, NY, 1950, 249–323 | DOI | MR | Zbl
[28] Yu. E. Alenitsyn, “Univalent functions without common values in a multiply connected domain”, Proc. Steklov Inst. Math., 94 (1968), 1–18 | MR | Zbl
[29] I. P. Mityuk, Simmetrizatsionnye metody i ikh primenenie v geometricheskoi teorii funktsii. Vvedenie v simmetrizatsionnye metody, Izd-vo Kubanskogo un-ta, Krasnodar, 1980, 91 pp.
[30] I. P. Mityuk, Primenenie simmetrizatsionnykh metodov v geometricheskoi teorii funktsii, Izd-vo Kubanskogo un-ta, Krasnodar, 1985, 93 pp.
[31] G. F. Lawler, Conformally invariant processes in the plane, Math. Surveys Monogr., 114, Amer. Math. Soc., Providence, RI, 2005, xii+242 pp. | MR | Zbl
[32] G. Lawler, “Schramm–Loewner evolution (SLE)”, Statistical mechanics (Park City, UT, 2007), IAS/Park City Math. Ser., 16, Amer. Math. Soc., Providence, RI, 2009, 231–295 | MR | Zbl
[33] G. F. Lawler, “Conformal invariance and 2D statistical physics”, Bull. Amer. Math. Soc. (N. S.), 46:1 (2009), 35–54 | DOI | MR | Zbl
[34] S. Rohde, C. Wong, “Half-plane capacity and conformal radius”, Proc. Amer. Math. Soc., 142:3 (2014), 931–938 | DOI | MR | Zbl
[35] Z. Nehari, “Some inequalities in the theory of functions”, Trans. Amer. Math. Soc., 75:2 (1953), 256–286 | DOI | MR | Zbl
[36] W. Kraus, “Über den Zusammenhang einiger Characteristiken eines einfach zusammenhängenden Bereiches mit der Kreisabbildung”, Mitt. Math. Sem. Giessen, 21 (1932), 1–28 | Zbl
[37] V. Singh, “Grunsky inequalities and coefficients of bounded schlicht functions”, Ann. Acad. Sci. Fenn. Ser. A I, 310, Helsinki, Suomalainen tiedeakatemia, 1962, 22 pp. | MR | Zbl
[38] E. Schippers, “Distortion theorems for higher-order Schwarzian derivatives of univalent functions”, Proc. Amer. Math. Soc., 128:11 (2000), 3241–3249 | DOI | MR | Zbl
[39] D. Aharonov, “Sequence of necessary conditions for univalence of a meromorphic function”, Duke Math. J., 38 (1971), 595–598 | DOI | MR | Zbl
[40] G. Pólya, G. Szegö, Isoperimetric inequalities in mathematical physics, Ann. of Math. Stud., 27, Princeton Univ. Press, Princeton, NJ, 1951, xvi+279 pp. | MR | MR | Zbl | Zbl
[41] N. A. Lebedev, Printsip ploschadei v teorii odnolistnykh funktsii, Nauka, M., 1975, 336 pp. | MR | Zbl
[42] V. N. Dubinin, “Schwarz's lemma and estimates of coefficients for regular functions with free domain of definition”, Sb. Math., 196:11 (2005), 1605–1625 | DOI | DOI | MR | Zbl
[43] R. Tauraso, F. Vlacci, “Rigidity at the boundary for holomorphic self-maps of the unit disk”, Complex Variables Theory Appl., 45:2 (2001), 151–165 | MR | Zbl
[44] D. Shoikhet, “Another look at the Burns–Krantz theorem”, J. Anal. Math., 105 (2008), 19–42 | DOI | MR | Zbl
[45] M. D. Contreras, S. Diaz-Madrigal, Ch. Pommerenke, “Second angular derivatives and parabolic iteration in the unit disk”, Trans. Amer. Math. Soc., 362:1 (2010), 357–388 | DOI | MR | Zbl
[46] P. S. Bourdon, J. H. Shapiro, Cyclic phenomena for composition operators, Mem. Amer. Math. Soc., 125, No 596, Amer. Math. Soc., Providence, RI, 1997, x+105 pp. | DOI | MR | Zbl
[47] D. M. Burns, S. G. Krantz, “Rigidity of holomorphic mappings and a new Schwarz lemma at the boundary”, J. Amer. Math. Soc., 7:3 (1994), 661–676 | DOI | MR | Zbl
[48] S. G. Krantz, “The Schwarz lemma at the boundary”, Complex Var. Elliptic Equ., 56:5 (2011), 455–468 | DOI | MR | Zbl
[49] V. N. Dubinin, “Majorization principles for meromorphic functions”, Math. Notes, 84:6 (2008), 751–755 | DOI | DOI | MR | Zbl
[50] S. Lalley, G. Lawler, H. Narayanan, “Geometric interpretation of half-plane capacity”, Electron. Commun. Probab., 14 (2009), 55, 566–571 | DOI | MR | Zbl
[51] M. Marcus, “Transformations of domains in the plane and applications in the theory of functions”, Pacific J. Math., 14:2 (1964), 613–626 | DOI | MR | Zbl
[52] V. V. Goryainov, “Semigroups of analytic functions in analysis and applications”, Russian Math. Surveys, 67:6 (2012), 975–1021 | DOI | DOI | MR | Zbl