Geometric estimates for the Schwarzian derivative
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 72 (2017) no. 3, pp. 479-511 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper is a survey of results involving the Schwarzian derivative and depending on the geometry of the image of a domain under a holomorphic map. The author's results obtained previously by using the theory of condenser capacity and symmetrization constitute the core of the paper. Inequalities for univalent and multivalent functions are considered both at interior and at boundary points of the domain of definition. Auxiliary results and proofs of some of the theorems are presented. Bibliography: 52 titles.
Keywords: Schwarzian derivative, holomorphic functions, boundary distortion, condenser capacity, symmetrization.
@article{RM_2017_72_3_a2,
     author = {V. N. Dubinin},
     title = {Geometric estimates for the {Schwarzian} derivative},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {479--511},
     year = {2017},
     volume = {72},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2017_72_3_a2/}
}
TY  - JOUR
AU  - V. N. Dubinin
TI  - Geometric estimates for the Schwarzian derivative
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2017
SP  - 479
EP  - 511
VL  - 72
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/RM_2017_72_3_a2/
LA  - en
ID  - RM_2017_72_3_a2
ER  - 
%0 Journal Article
%A V. N. Dubinin
%T Geometric estimates for the Schwarzian derivative
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2017
%P 479-511
%V 72
%N 3
%U http://geodesic.mathdoc.fr/item/RM_2017_72_3_a2/
%G en
%F RM_2017_72_3_a2
V. N. Dubinin. Geometric estimates for the Schwarzian derivative. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 72 (2017) no. 3, pp. 479-511. http://geodesic.mathdoc.fr/item/RM_2017_72_3_a2/

[1] Z. Nehari, Conformal mapping, McGraw-Hill Book Co., Inc., New York–Toronto–London, 1952, viii+396 pp. ; Dover Publications, Inc., New York, 1975, vii+396 pp. | MR | Zbl | MR

[2] O. Lehto, Univalent functions and Teichmüller spaces, Grad. Texts in Math., 109, Springer-Verlag, New York, 1987, xii+257 pp. | DOI | MR | Zbl

[3] B. Osgood, “Old and new on the Schwarzian derivative”, Quasiconformal mappings and analysis, A collection of papers honoring F. W. Gehring (Ann Arbor, MI, 1995), Springer, New York, 1998, 275–308 | MR | Zbl

[4] M. Chuaqui, P. Duren, W. Ma, D. Mejía, D. Minda, B. Osgood, “Schwarzian norms and two-point distortion”, Pacific J. Math., 254:1 (2011), 101–116 | DOI | MR | Zbl

[5] G. M. Goluzin, Geometric theory of functions of a complex variable, Transl. Math. Monogr., 26, Amer. Math. Soc., Providence, RI, 1969, vi+676 pp. | MR | MR | Zbl | Zbl

[6] W. K. Hayman, Multivalent functions, Cambridge Tracts in Math., 110, 2nd ed., Cambridge Univ. Press, Cambridge, 1994, xii+263 pp. | DOI | MR | Zbl

[7] J. A. Jenkins, Univalent functions and conformal mapping, Ergeb. Math. Grenzgeb. (N. F.), 18, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1958, vi+169 pp. ; 9, No 5, 1997 | MR | Zbl | Zbl | MR | Zbl

[8] G. V. Kuz'mina, “Methods of the geometric theory of functions. I”, St. Petersburg Math. J., 9:3 (1998), 455–507 ; “II”, 9:5 (1998), 889–930 | MR | MR | Zbl | Zbl

[9] V. N. Dubinin, Condenser capacities and symmetrization in geometric function theory, Springer, Basel, 2014, xii+344 pp. ; V. H. Dubinin, Emkosti kondensatorov i simmetrizatsiya v geometricheskoi teorii funktsii kompleksnogo peremennogo, Dalnauka, Vladivostok, 2009, ix+390 pp. | DOI | MR | Zbl

[10] J. B. Garnett, D. E. Marshall, Harmonic measure, New Math. Monogr., 2, Cambridge Univ. Press, Cambridge, 2005, xvi+571 pp. | DOI | MR | Zbl

[11] V. N. Dubinin, “Symmetrization, Green's function, and conformal mappings”, J. Math. Sci. (N. Y.), 89:1 (1998), 967–975 | DOI | MR | Zbl

[12] V. N. Dubinin, “Asymptotics of the module of a degenerating condenser and some of their applications”, J. Math. Sci. (N. Y.), 95:3 (1999), 2209–2220 | DOI | MR | Zbl

[13] V. N. Dubinin, L. V. Kovalev, “The reduced module of the complex sphere”, J. Math. Sci. (N. Y.), 105:4 (2001), 2165–2179 | DOI | MR | Zbl

[14] V. N. Dubinin, N. V. Eyrikh, “Some applications of generalized condensers to analytic function theory”, J. Math. Sci. (N. Y.), 133:6 (2006), 1634–1647 | DOI | MR | Zbl

[15] V. N. Dubinin, “Lower bounds for the half-plane capacity of compact sets and symmetrization”, Sb. Math., 201:11 (2010), 1635–1646 | DOI | DOI | MR | Zbl

[16] V. N. Dubinin, E. G. Prilepkina, “Distortion theorems for univalent meromorphic functions on an annulus”, Sib. Math. J., 51:2 (2010), 229–243 | DOI | MR | Zbl

[17] V. N. Dubinin, D. A. Kirillova, “Nekotorye primeneniya ekstremalnykh razbienii v geometricheskoi teorii funktsii”, Dalnevost. matem. zhurn., 10:2 (2010), 130–152 | MR

[18] V. N. Dubinin, “Steiner symmetrization and the initial coefficients of univalent functions”, Izv. Math., 74:4 (2010), 735–742 | DOI | DOI | MR | Zbl

[19] V. N. Dubinin, M. Vuorinen, “Robin functions and distortion theorems for regular mappings”, Math. Nachr., 283:11 (2010), 1589–1602 | DOI | MR | Zbl

[20] V. N. Dubinin, “Boundary values of the Schwarzian derivative of a regular function”, Sb. Math., 202:5 (2011), 649–663 | DOI | DOI | MR | Zbl

[21] V. N. Dubinin, “Ob odnom klasse odnolistnykh funktsii”, Dalnevost. matem. zhurn., 12:2 (2012), 184–194 | MR | Zbl

[22] V. N. Dubinin, “Bounded holomorphic functions covering no concentric circles”, J. Math. Sci. (N. Y.), 207:6 (2015), 825–831 | DOI | MR | Zbl

[23] V. N. Dubinin, “Dvutochechnaya granichnaya otsenka proizvodnoi Shvartsa golomorfnoi funktsii”, Dalnevost. matem. zhurn., 14:2 (2014), 191–199 | MR | Zbl

[24] V. N. Dubinin, M. Vuorinen, “Ahlfors–Beurling conformal invariant and relative capacity of compact sets”, Proc. Amer. Math. Soc., 142:11 (2014), 3865–3879 | DOI | MR | Zbl

[25] V. N. Dubinin, “Schwarzian derivative and covering arcs of a pencil of circles by holomorphic functions”, Math. Notes, 98:6 (2015), 920–925 | DOI | DOI | MR | Zbl

[26] V. N. Dubinin, “Inequalities for harmonic measures with respect to non-overlapping domains”, Izv. Math., 79:5 (2015), 902–918 | DOI | DOI | MR | Zbl

[27] M. Schiffer, “Some recent developments in the theory of conformal mapping”, Appendix to: R. Courant, Dirichlet's principle, conformal mapping, and minimal surfaces, Interscience Publishers, Inc., New York, NY, 1950, 249–323 | DOI | MR | Zbl

[28] Yu. E. Alenitsyn, “Univalent functions without common values in a multiply connected domain”, Proc. Steklov Inst. Math., 94 (1968), 1–18 | MR | Zbl

[29] I. P. Mityuk, Simmetrizatsionnye metody i ikh primenenie v geometricheskoi teorii funktsii. Vvedenie v simmetrizatsionnye metody, Izd-vo Kubanskogo un-ta, Krasnodar, 1980, 91 pp.

[30] I. P. Mityuk, Primenenie simmetrizatsionnykh metodov v geometricheskoi teorii funktsii, Izd-vo Kubanskogo un-ta, Krasnodar, 1985, 93 pp.

[31] G. F. Lawler, Conformally invariant processes in the plane, Math. Surveys Monogr., 114, Amer. Math. Soc., Providence, RI, 2005, xii+242 pp. | MR | Zbl

[32] G. Lawler, “Schramm–Loewner evolution (SLE)”, Statistical mechanics (Park City, UT, 2007), IAS/Park City Math. Ser., 16, Amer. Math. Soc., Providence, RI, 2009, 231–295 | MR | Zbl

[33] G. F. Lawler, “Conformal invariance and 2D statistical physics”, Bull. Amer. Math. Soc. (N. S.), 46:1 (2009), 35–54 | DOI | MR | Zbl

[34] S. Rohde, C. Wong, “Half-plane capacity and conformal radius”, Proc. Amer. Math. Soc., 142:3 (2014), 931–938 | DOI | MR | Zbl

[35] Z. Nehari, “Some inequalities in the theory of functions”, Trans. Amer. Math. Soc., 75:2 (1953), 256–286 | DOI | MR | Zbl

[36] W. Kraus, “Über den Zusammenhang einiger Characteristiken eines einfach zusammenhängenden Bereiches mit der Kreisabbildung”, Mitt. Math. Sem. Giessen, 21 (1932), 1–28 | Zbl

[37] V. Singh, “Grunsky inequalities and coefficients of bounded schlicht functions”, Ann. Acad. Sci. Fenn. Ser. A I, 310, Helsinki, Suomalainen tiedeakatemia, 1962, 22 pp. | MR | Zbl

[38] E. Schippers, “Distortion theorems for higher-order Schwarzian derivatives of univalent functions”, Proc. Amer. Math. Soc., 128:11 (2000), 3241–3249 | DOI | MR | Zbl

[39] D. Aharonov, “Sequence of necessary conditions for univalence of a meromorphic function”, Duke Math. J., 38 (1971), 595–598 | DOI | MR | Zbl

[40] G. Pólya, G. Szegö, Isoperimetric inequalities in mathematical physics, Ann. of Math. Stud., 27, Princeton Univ. Press, Princeton, NJ, 1951, xvi+279 pp. | MR | MR | Zbl | Zbl

[41] N. A. Lebedev, Printsip ploschadei v teorii odnolistnykh funktsii, Nauka, M., 1975, 336 pp. | MR | Zbl

[42] V. N. Dubinin, “Schwarz's lemma and estimates of coefficients for regular functions with free domain of definition”, Sb. Math., 196:11 (2005), 1605–1625 | DOI | DOI | MR | Zbl

[43] R. Tauraso, F. Vlacci, “Rigidity at the boundary for holomorphic self-maps of the unit disk”, Complex Variables Theory Appl., 45:2 (2001), 151–165 | MR | Zbl

[44] D. Shoikhet, “Another look at the Burns–Krantz theorem”, J. Anal. Math., 105 (2008), 19–42 | DOI | MR | Zbl

[45] M. D. Contreras, S. Diaz-Madrigal, Ch. Pommerenke, “Second angular derivatives and parabolic iteration in the unit disk”, Trans. Amer. Math. Soc., 362:1 (2010), 357–388 | DOI | MR | Zbl

[46] P. S. Bourdon, J. H. Shapiro, Cyclic phenomena for composition operators, Mem. Amer. Math. Soc., 125, No 596, Amer. Math. Soc., Providence, RI, 1997, x+105 pp. | DOI | MR | Zbl

[47] D. M. Burns, S. G. Krantz, “Rigidity of holomorphic mappings and a new Schwarz lemma at the boundary”, J. Amer. Math. Soc., 7:3 (1994), 661–676 | DOI | MR | Zbl

[48] S. G. Krantz, “The Schwarz lemma at the boundary”, Complex Var. Elliptic Equ., 56:5 (2011), 455–468 | DOI | MR | Zbl

[49] V. N. Dubinin, “Majorization principles for meromorphic functions”, Math. Notes, 84:6 (2008), 751–755 | DOI | DOI | MR | Zbl

[50] S. Lalley, G. Lawler, H. Narayanan, “Geometric interpretation of half-plane capacity”, Electron. Commun. Probab., 14 (2009), 55, 566–571 | DOI | MR | Zbl

[51] M. Marcus, “Transformations of domains in the plane and applications in the theory of functions”, Pacific J. Math., 14:2 (1964), 613–626 | DOI | MR | Zbl

[52] V. V. Goryainov, “Semigroups of analytic functions in analysis and applications”, Russian Math. Surveys, 67:6 (2012), 975–1021 | DOI | DOI | MR | Zbl