Topological approach to the generalized $n$-centre problem
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 72 (2017) no. 3, pp. 451-478 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper considers a natural Hamiltonian system with two degrees of freedom and Hamiltonian $H=\|p\|^2/2+V(q)$. The configuration space $M$ is a closed surface (for non-compact $M$ certain conditions at infinity are required). It is well known that if the potential energy $V$ has $n>2\chi(M)$ Newtonian singularities, then the system is not integrable and has positive topological entropy on the energy level $H=h>\sup V$. This result is generalized here to the case when the potential energy has several singular points $a_j$ of type $V(q)\sim {-}\operatorname{dist}(q,a_j)^{-\alpha_j}$. Let $A_k=2-2k^{-1}$, $k\in\mathbb{N}$, and let $n_k$ be the number of singular points with $A_k\leqslant \alpha_j$. It is proved that if $$ \sum_{2\leqslant k\leqslant\infty}n_kA_k>2\chi(M), $$ then the system has a compact chaotic invariant set of collision-free trajectories on any energy level $H=h>\sup V$. This result is purely topological: no analytical properties of the potential energy are used except the presence of singularities. The proofs are based on the generalized Levi-Civita regularization and elementary topology of coverings. As an example, the plane $n$-centre problem is considered. Bibliography: 29 titles.
Keywords: Hamiltonian system, integrability, singular point, degree of singular point, Levi-Civita regularization, Finsler metric, covering, collision-free trajectory, chaotic invariant set, metric space, Jacobi metric.
@article{RM_2017_72_3_a1,
     author = {S. V. Bolotin and V. V. Kozlov},
     title = {Topological approach to the generalized $n$-centre problem},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {451--478},
     year = {2017},
     volume = {72},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2017_72_3_a1/}
}
TY  - JOUR
AU  - S. V. Bolotin
AU  - V. V. Kozlov
TI  - Topological approach to the generalized $n$-centre problem
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2017
SP  - 451
EP  - 478
VL  - 72
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/RM_2017_72_3_a1/
LA  - en
ID  - RM_2017_72_3_a1
ER  - 
%0 Journal Article
%A S. V. Bolotin
%A V. V. Kozlov
%T Topological approach to the generalized $n$-centre problem
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2017
%P 451-478
%V 72
%N 3
%U http://geodesic.mathdoc.fr/item/RM_2017_72_3_a1/
%G en
%F RM_2017_72_3_a1
S. V. Bolotin; V. V. Kozlov. Topological approach to the generalized $n$-centre problem. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 72 (2017) no. 3, pp. 451-478. http://geodesic.mathdoc.fr/item/RM_2017_72_3_a1/

[1] A. Ambrosetti, V. Coti Zelati, Periodic solutions of singular Lagrangian systems, Progr. Nonlinear Differential Equations Appl., 10, Birkhäuser Boston, Inc., Boston, MA, 1993, xii+157 pp. | DOI | MR | Zbl

[2] G. D. Birkhoff, Dynamical systems, Amer. Math. Soc. Colloq. Publ., 9, Amer. Math. Soc., New York, 1927, viii+295 pp. | MR | Zbl | Zbl

[3] S. V. Bolotin, “Nonintegrability of the $N$-center problem for $N>2$”, Moscow Univ. Mech. Bull., 39:3 (1984), 24–28 | MR | Zbl

[4] S. V. Bolotin, “The effect of singularities of the potential energy on the integrability of mechanical systems”, J. Appl. Math. Mech., 48:3 (1984), 255–260 | DOI | MR | Zbl

[5] S. V. Bolotin, “First integrals of systems with gyroscopic forces”, Moscow Univ. Mech. Bull., 39:6 (1984), 20–28 | MR | Zbl

[6] S. V. Bolotin, “Homoclinic orbits of geodesic flows on surfaces”, Russian J. Math. Phys., 1:3 (1993), 275–288 | MR | Zbl

[7] S. V. Bolotin, “Degenerate billiards”, Proc. Steklov Inst. Math., 295 (2016), 45–62 | DOI | DOI | MR | Zbl

[8] S. V. Bolotin, V. V. Kozlov, “Libration in systems with many degrees of freedom”, J. Appl. Math. Mech., 42:2 (1978), 256–261 | DOI | MR | Zbl

[9] S. V. Bolotin, V. V. Kozlov, “Topology, singularities and integrability in Hamiltonian systems with two degrees of freedom”, Izv. Math., 81:4 (2017) | DOI | DOI

[10] S. V. Bolotin, R. S. Mackay, “Periodic and chaotic trajectories of the second species for the $n$-centre problem”, Celestial Mech. Dynam. Astronom., 77:1 (2000), 49–75 | DOI | MR | Zbl

[11] S. Bolotin, P. Negrini, “Global regularization for the $n$-center problem on a manifold”, Discrete Contin. Dyn. Syst., 8:4 (2002), 873–892 | DOI | MR | Zbl

[12] S. V. Bolotin, D. V. Treschev, “The anti-integrable limit”, Russian Math. Surveys, 70:6 (2015), 975–1030 | DOI | DOI | MR | Zbl

[13] D. Burago, Y. Burago, S. Ivanov, A course in metric geometry, Grad. Stud. Math., 33, Amer. Math. Soc., Providence, RI, 2001, xiv+415 pp. | DOI | MR | Zbl

[14] R. Castelli, “Topologically distinct collision-free periodic solutions for the $N$-center problem”, Arch. Ration. Mech. Anal., 223:2 (2017), 941–975 | DOI | MR | Zbl

[15] E. I. Dinaburg, “On the relations among various entropy characteristics of dynamical systems”, Math. USSR-Izv., 5:2 (1971), 337–378 | DOI | MR | Zbl

[16] W. B. Gordon, “Conservative dynamical systems involving strong forces”, Trans. Amer. Math. Soc., 204 (1975), 113–135 | DOI | MR | Zbl

[17] J. Hass, P. Scott, “Shortening curves on surfaces”, Topology, 33:1 (1994), 25–43 | DOI | MR | Zbl

[18] G. A. Hedlund, “The dynamics of geodesic flows”, Bull. Amer. Math. Soc., 45:4 (1939), 241–260 | DOI | MR | Zbl

[19] A. Katok, “Entropy and closed geodesics”, Ergodic Theory Dynam. Systems, 2:3-4 (1982), 339–365 | DOI | MR | Zbl

[20] A. Katok, B. Hasselblatt, Introduction to the modern theory of dynamical systems, Encyclopedia Math. Appl., 54, Cambridge Univ. Press, Cambridge, 1995, xviii+802 pp. | DOI | MR | Zbl

[21] A. Knauf, “Ergodic and topological properties of Coulombic periodic potentials”, Comm. Math. Phys., 110:1 (1987), 89–112 | DOI | MR | Zbl

[22] A. Knauf, “The $n$-centre problem of celestial mechanics for large energies”, J. Eur. Math. Soc. (JEMS), 4:1 (2002), 1–114 | DOI | MR | Zbl

[23] V. V. Kozlov, “Topological obstructions to the integrability of natural mechanical systems”, Soviet Math. Dokl., 20 (1979), 1413–1415 | MR | Zbl

[24] V. V. Kozlov, D. V. Treschev, “Topology of the configuration space, singularities of the potential, and polynomial integrals of equations of dynamics”, Sb. Math., 207:10 (2016), 1435–1449 | DOI | DOI | MR | Zbl

[25] T. Levi-Civita, “Sur la régularisation du problème des trois corps”, Acta Math., 42:1 (1920), 99–144 | DOI | MR | Zbl

[26] H. M. Morse, “A fundamental class of geodesics in any closed surface of genus greater than one”, Trans. Amer. Math. Soc., 26:1 (1924), 25–60 | DOI | MR | Zbl

[27] G. P. Paternain, “Topological entropy for geodesic flows on fibre bundles over rationally hyperbolic manifolds”, Proc. Amer. Math. Soc., 125:9 (1997), 2759–2765 | DOI | MR | Zbl

[28] N. Soave, S. Terracini, “Symbolic dynamics for the $N$-centre problem at negative energies”, Discrete Contin. Dyn. Syst., 32:9 (2012), 3245–3301 | DOI | MR | Zbl

[29] N. Soave, S. Terracini, “Avoiding collisions under topological constraints in variational problems coming from celestial mechanics”, J. Fixed Point Theory Appl., 14:2 (2013), 457–501 | DOI | MR | Zbl