@article{RM_2017_72_3_a1,
author = {S. V. Bolotin and V. V. Kozlov},
title = {Topological approach to the generalized $n$-centre problem},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {451--478},
year = {2017},
volume = {72},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2017_72_3_a1/}
}
S. V. Bolotin; V. V. Kozlov. Topological approach to the generalized $n$-centre problem. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 72 (2017) no. 3, pp. 451-478. http://geodesic.mathdoc.fr/item/RM_2017_72_3_a1/
[1] A. Ambrosetti, V. Coti Zelati, Periodic solutions of singular Lagrangian systems, Progr. Nonlinear Differential Equations Appl., 10, Birkhäuser Boston, Inc., Boston, MA, 1993, xii+157 pp. | DOI | MR | Zbl
[2] G. D. Birkhoff, Dynamical systems, Amer. Math. Soc. Colloq. Publ., 9, Amer. Math. Soc., New York, 1927, viii+295 pp. | MR | Zbl | Zbl
[3] S. V. Bolotin, “Nonintegrability of the $N$-center problem for $N>2$”, Moscow Univ. Mech. Bull., 39:3 (1984), 24–28 | MR | Zbl
[4] S. V. Bolotin, “The effect of singularities of the potential energy on the integrability of mechanical systems”, J. Appl. Math. Mech., 48:3 (1984), 255–260 | DOI | MR | Zbl
[5] S. V. Bolotin, “First integrals of systems with gyroscopic forces”, Moscow Univ. Mech. Bull., 39:6 (1984), 20–28 | MR | Zbl
[6] S. V. Bolotin, “Homoclinic orbits of geodesic flows on surfaces”, Russian J. Math. Phys., 1:3 (1993), 275–288 | MR | Zbl
[7] S. V. Bolotin, “Degenerate billiards”, Proc. Steklov Inst. Math., 295 (2016), 45–62 | DOI | DOI | MR | Zbl
[8] S. V. Bolotin, V. V. Kozlov, “Libration in systems with many degrees of freedom”, J. Appl. Math. Mech., 42:2 (1978), 256–261 | DOI | MR | Zbl
[9] S. V. Bolotin, V. V. Kozlov, “Topology, singularities and integrability in Hamiltonian systems with two degrees of freedom”, Izv. Math., 81:4 (2017) | DOI | DOI
[10] S. V. Bolotin, R. S. Mackay, “Periodic and chaotic trajectories of the second species for the $n$-centre problem”, Celestial Mech. Dynam. Astronom., 77:1 (2000), 49–75 | DOI | MR | Zbl
[11] S. Bolotin, P. Negrini, “Global regularization for the $n$-center problem on a manifold”, Discrete Contin. Dyn. Syst., 8:4 (2002), 873–892 | DOI | MR | Zbl
[12] S. V. Bolotin, D. V. Treschev, “The anti-integrable limit”, Russian Math. Surveys, 70:6 (2015), 975–1030 | DOI | DOI | MR | Zbl
[13] D. Burago, Y. Burago, S. Ivanov, A course in metric geometry, Grad. Stud. Math., 33, Amer. Math. Soc., Providence, RI, 2001, xiv+415 pp. | DOI | MR | Zbl
[14] R. Castelli, “Topologically distinct collision-free periodic solutions for the $N$-center problem”, Arch. Ration. Mech. Anal., 223:2 (2017), 941–975 | DOI | MR | Zbl
[15] E. I. Dinaburg, “On the relations among various entropy characteristics of dynamical systems”, Math. USSR-Izv., 5:2 (1971), 337–378 | DOI | MR | Zbl
[16] W. B. Gordon, “Conservative dynamical systems involving strong forces”, Trans. Amer. Math. Soc., 204 (1975), 113–135 | DOI | MR | Zbl
[17] J. Hass, P. Scott, “Shortening curves on surfaces”, Topology, 33:1 (1994), 25–43 | DOI | MR | Zbl
[18] G. A. Hedlund, “The dynamics of geodesic flows”, Bull. Amer. Math. Soc., 45:4 (1939), 241–260 | DOI | MR | Zbl
[19] A. Katok, “Entropy and closed geodesics”, Ergodic Theory Dynam. Systems, 2:3-4 (1982), 339–365 | DOI | MR | Zbl
[20] A. Katok, B. Hasselblatt, Introduction to the modern theory of dynamical systems, Encyclopedia Math. Appl., 54, Cambridge Univ. Press, Cambridge, 1995, xviii+802 pp. | DOI | MR | Zbl
[21] A. Knauf, “Ergodic and topological properties of Coulombic periodic potentials”, Comm. Math. Phys., 110:1 (1987), 89–112 | DOI | MR | Zbl
[22] A. Knauf, “The $n$-centre problem of celestial mechanics for large energies”, J. Eur. Math. Soc. (JEMS), 4:1 (2002), 1–114 | DOI | MR | Zbl
[23] V. V. Kozlov, “Topological obstructions to the integrability of natural mechanical systems”, Soviet Math. Dokl., 20 (1979), 1413–1415 | MR | Zbl
[24] V. V. Kozlov, D. V. Treschev, “Topology of the configuration space, singularities of the potential, and polynomial integrals of equations of dynamics”, Sb. Math., 207:10 (2016), 1435–1449 | DOI | DOI | MR | Zbl
[25] T. Levi-Civita, “Sur la régularisation du problème des trois corps”, Acta Math., 42:1 (1920), 99–144 | DOI | MR | Zbl
[26] H. M. Morse, “A fundamental class of geodesics in any closed surface of genus greater than one”, Trans. Amer. Math. Soc., 26:1 (1924), 25–60 | DOI | MR | Zbl
[27] G. P. Paternain, “Topological entropy for geodesic flows on fibre bundles over rationally hyperbolic manifolds”, Proc. Amer. Math. Soc., 125:9 (1997), 2759–2765 | DOI | MR | Zbl
[28] N. Soave, S. Terracini, “Symbolic dynamics for the $N$-centre problem at negative energies”, Discrete Contin. Dyn. Syst., 32:9 (2012), 3245–3301 | DOI | MR | Zbl
[29] N. Soave, S. Terracini, “Avoiding collisions under topological constraints in variational problems coming from celestial mechanics”, J. Fixed Point Theory Appl., 14:2 (2013), 457–501 | DOI | MR | Zbl