Topological approach to the generalized $n$-centre problem
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 72 (2017) no. 3, pp. 451-478

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper considers a natural Hamiltonian system with two degrees of freedom and Hamiltonian $H=\|p\|^2/2+V(q)$. The configuration space $M$ is a closed surface (for non-compact $M$ certain conditions at infinity are required). It is well known that if the potential energy $V$ has $n>2\chi(M)$ Newtonian singularities, then the system is not integrable and has positive topological entropy on the energy level $H=h>\sup V$. This result is generalized here to the case when the potential energy has several singular points $a_j$ of type $V(q)\sim {-}\operatorname{dist}(q,a_j)^{-\alpha_j}$. Let $A_k=2-2k^{-1}$, $k\in\mathbb{N}$, and let $n_k$ be the number of singular points with $A_k\leqslant \alpha_j$. It is proved that if $$ \sum_{2\leqslant k\leqslant\infty}n_kA_k>2\chi(M), $$ then the system has a compact chaotic invariant set of collision-free trajectories on any energy level $H=h>\sup V$. This result is purely topological: no analytical properties of the potential energy are used except the presence of singularities. The proofs are based on the generalized Levi-Civita regularization and elementary topology of coverings. As an example, the plane $n$-centre problem is considered. Bibliography: 29 titles.
Keywords: Hamiltonian system, integrability, singular point, degree of singular point, Levi-Civita regularization, Finsler metric, covering, collision-free trajectory, chaotic invariant set, metric space, Jacobi metric.
@article{RM_2017_72_3_a1,
     author = {S. V. Bolotin and V. V. Kozlov},
     title = {Topological approach to the generalized $n$-centre problem},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {451--478},
     publisher = {mathdoc},
     volume = {72},
     number = {3},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2017_72_3_a1/}
}
TY  - JOUR
AU  - S. V. Bolotin
AU  - V. V. Kozlov
TI  - Topological approach to the generalized $n$-centre problem
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2017
SP  - 451
EP  - 478
VL  - 72
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_2017_72_3_a1/
LA  - en
ID  - RM_2017_72_3_a1
ER  - 
%0 Journal Article
%A S. V. Bolotin
%A V. V. Kozlov
%T Topological approach to the generalized $n$-centre problem
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2017
%P 451-478
%V 72
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_2017_72_3_a1/
%G en
%F RM_2017_72_3_a1
S. V. Bolotin; V. V. Kozlov. Topological approach to the generalized $n$-centre problem. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 72 (2017) no. 3, pp. 451-478. http://geodesic.mathdoc.fr/item/RM_2017_72_3_a1/