Topological approach to the generalized $n$-centre problem
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 72 (2017) no. 3, pp. 451-478
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper considers a natural Hamiltonian system with two degrees of freedom and Hamiltonian $H=\|p\|^2/2+V(q)$.
The configuration space $M$ is a closed surface (for non-compact $M$ certain conditions at infinity are required).
It is well known that if the potential energy $V$ has $n>2\chi(M)$ Newtonian singularities,
then the system is not integrable and has positive topological entropy on the energy level $H=h>\sup V$. This result is generalized here to the case when the potential energy has several singular points $a_j$
of type $V(q)\sim {-}\operatorname{dist}(q,a_j)^{-\alpha_j}$.
Let $A_k=2-2k^{-1}$, $k\in\mathbb{N}$, and let $n_k$ be the number of singular points
with $A_k\leqslant \alpha_j$.
It is proved that if
$$
\sum_{2\leqslant k\leqslant\infty}n_kA_k>2\chi(M),
$$
then the system has a compact chaotic invariant set
of collision-free trajectories on any energy level $H=h>\sup V$.
This result is purely topological: no analytical properties of the potential energy are used
except the presence of singularities. The proofs are based
on the generalized Levi-Civita regularization and elementary topology of coverings.
As an example, the plane $n$-centre problem is considered.
Bibliography: 29 titles.
Keywords:
Hamiltonian system, integrability, singular point, degree of singular point, Levi-Civita regularization, Finsler metric, covering, collision-free trajectory, chaotic invariant set, metric space, Jacobi metric.
@article{RM_2017_72_3_a1, author = {S. V. Bolotin and V. V. Kozlov}, title = {Topological approach to the generalized $n$-centre problem}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {451--478}, publisher = {mathdoc}, volume = {72}, number = {3}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/RM_2017_72_3_a1/} }
TY - JOUR AU - S. V. Bolotin AU - V. V. Kozlov TI - Topological approach to the generalized $n$-centre problem JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2017 SP - 451 EP - 478 VL - 72 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RM_2017_72_3_a1/ LA - en ID - RM_2017_72_3_a1 ER -
S. V. Bolotin; V. V. Kozlov. Topological approach to the generalized $n$-centre problem. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 72 (2017) no. 3, pp. 451-478. http://geodesic.mathdoc.fr/item/RM_2017_72_3_a1/