On Nikishin systems with discrete components and weak asymptotics of multiple orthogonal polynomials
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 72 (2017) no. 3, pp. 389-449 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This survey considers multiple orthogonal polynomials with respect to Nikishin systems generated by a pair $(\sigma_1,\sigma_2)$ of measures\linebreak with unbounded supports ($\operatorname{supp}(\sigma_1) \subseteq \mathbb{R}_+$, $\operatorname{supp}(\sigma_2)\subset \mathbb{R}_-$) and with $\sigma_2$ discrete. A Nikishin-type equilibrium problem in the presence of an external field acting on $\mathbb{R}_+$ and a constraint on $\mathbb{R}_-$ is stated and solved. The solution is used for deriving the contracted zero distribution of the associated multiple orthogonal polynomials. Bibliography: 56 titles.
Keywords: orthogonality with respect to a discrete measure, weak asymptotics, vector equilibrium problem, Nikishin systems.
Mots-clés : Hermite–Padé approximants, multiple orthogonal polynomials
@article{RM_2017_72_3_a0,
     author = {A. I. Aptekarev and G. L\'opez Lagomasino and A. Mart{\'\i}nez-Finkelshtein},
     title = {On {Nikishin} systems with discrete components and weak asymptotics of multiple orthogonal polynomials},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {389--449},
     year = {2017},
     volume = {72},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2017_72_3_a0/}
}
TY  - JOUR
AU  - A. I. Aptekarev
AU  - G. López Lagomasino
AU  - A. Martínez-Finkelshtein
TI  - On Nikishin systems with discrete components and weak asymptotics of multiple orthogonal polynomials
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2017
SP  - 389
EP  - 449
VL  - 72
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/RM_2017_72_3_a0/
LA  - en
ID  - RM_2017_72_3_a0
ER  - 
%0 Journal Article
%A A. I. Aptekarev
%A G. López Lagomasino
%A A. Martínez-Finkelshtein
%T On Nikishin systems with discrete components and weak asymptotics of multiple orthogonal polynomials
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2017
%P 389-449
%V 72
%N 3
%U http://geodesic.mathdoc.fr/item/RM_2017_72_3_a0/
%G en
%F RM_2017_72_3_a0
A. I. Aptekarev; G. López Lagomasino; A. Martínez-Finkelshtein. On Nikishin systems with discrete components and weak asymptotics of multiple orthogonal polynomials. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 72 (2017) no. 3, pp. 389-449. http://geodesic.mathdoc.fr/item/RM_2017_72_3_a0/

[1] M. Abramowitz, I. A. Stegun (eds.), Handbook of mathematical functions with formulas, graphs, and mathematical tables, 9th printing, Dover Publications, Inc., New York, 1972, xiv+1046 pp. | MR | MR | Zbl

[2] A. Aptekarev, J. Arvesú, “Asymptotics for multiple Meixner polynomials”, J. Math. Anal. Appl., 411:2 (2014), 485–505 | DOI | MR | Zbl

[3] A. I. Aptekarev, P. M. Bleher, A. B. J. Kuijlaars, “Large $n$ limit of Gaussian random matrices with external source. II”, Comm. Math. Phys., 259:2 (2005), 367–389 | DOI | MR | Zbl

[4] A. I. Aptekarev, A. Branquinho, W. Van Assche, “Multiple orthogonal polynomials for classical weights”, Trans. Amer. Math. Soc., 355:10 (2003), 3887–3914 | DOI | MR | Zbl

[5] A. I. Aptekarev, V. A. Kalyagin, “Analytic properties of two-dimensional continued P-fraction expansions with periodical coefficients and their simultaneous Padé–Hermite approximants”, Rational approximation and applications in mathematics and physics (Łańcut, 1985), Lecture Notes in Math., 1237, Springer, Berlin, 1987, 145–160 | DOI | MR | Zbl

[6] A. I. Aptekarev, A. B. J. Kuijlaars, “Hermite–Padé approximations and multiple orthogonal polynomial ensembles”, Russian Math. Surveys, 66:6 (2011), 1133–1199 | DOI | DOI | MR | Zbl

[7] A. I. Aptekarev, V. G. Lysov, “Systems of Markov functions generated by graphs and the asymptotics of their Hermite–Padé approximants”, Sb. Math., 201:2 (2010), 183–234 | DOI | DOI | MR | Zbl

[8] A. I. Aptekarev, V. G. Lysov, D. N. Tulyakov, “Random matrices with external source and the asymptotic behaviour of multiple orthogonal polynomials”, Sb. Math., 202:2 (2011), 155–206 | DOI | DOI | MR | Zbl

[9] A. I. Aptekarev, H. Stahl, “Asymptotics of Hermite–Padé polynomials”, Progress in approximation theory (Tampa, FL, 1990), Springer Ser. Comput. Math., 19, Springer, New York, 1992, 127–167 | DOI | MR | Zbl

[10] B. Beckermann, V. Kalyagin, A. C. Matos, F. Wielonsky, “Equilibrium problems for vector potentials with semidefinite interaction matrices and constrained masses”, Constr. Approx., 37:1 (2013), 101–134 | DOI | MR | Zbl

[11] M. Bello-Hernández, G. López-Lagomasino, J. Mínguez-Ceniceros, “Fourier–Padé approximants for Angelesco systems”, Constr. Approx., 26:3 (2007), 339–359 | DOI | MR | Zbl

[12] M. Bender, S. Delvaux, A. B. J. Kuijlaars, “Multiple Meixner–Pollaczek polynomials and the six-vertex model”, J. Approx. Theory, 163:11 (2011), 1606–1637 | DOI | MR | Zbl

[13] P. Bleher, S. Delvaux, A. B. J. Kuijlaars, “Random matrix model with external source and a constrained vector equilibrium problem”, Comm. Pure Appl. Math., 64:1 (2011), 116–160 | DOI | MR | Zbl

[14] P. Bleher, A. B. J. Kuijlaars, “Large $n$ limit of Gaussian random matrices with external source. I”, Comm. Math. Phys., 252:1-3 (2004), 43–76 | DOI | MR | Zbl

[15] J. Bustamante Gonzalez, “Asymptotics for Angelesco–Nikishin systems”, J. Approx. Theory, 85:1 (1996), 43–68 | DOI | MR | Zbl

[16] U. Cegrell, S. Kolodziej, N. Levenberg, “Two problems on potential theory for unbounded sets”, Math. Scand., 83:2 (1998), 265–276 | DOI | MR | Zbl

[17] E. Coussement, W. Van Assche, “Multiple orthogonal polynomials associated with the modified Bessel functions of the first kind”, Constr. Approx., 19:2 (2003), 237–263 | DOI | MR | Zbl

[18] E. Coussement, W. Van Assche, “Asymptotics of multiple orthogonal polynomials associated with the modified Bessel functions of the first kind”, J. Comput. Appl. Math., 153:1-2 (2003), 141–149 | DOI | MR | Zbl

[19] P. A. Deift, Orthogonal polynomials and random matrices: a Riemann–Hilbert approach, Courant Lect. Notes Math., 3, New York Univ., Courant Institute of Mathematical Sciences, New York; Amer. Math. Soc., Providence, RI, 1999, viii+273 pp. | MR | Zbl

[20] P. D. Dragnev, E. B. Saff, “Constrained energy problems with applications to orthogonal polynomials of a discrete variable”, J. Anal. Math., 72 (1997), 223–259 | DOI | MR | Zbl

[21] K. Driver, H. Stahl, “Normality in Nikishin systems”, Indag. Math. (N. S.), 5:2 (1994), 161–187 | DOI | MR | Zbl

[22] K. Driver, H. Stahl, “Simultaneous rational approximants to Nikishin-systems. I”, Acta Sci. Math. (Szeged), 60:1-2 (1995), 245–263 | MR | Zbl

[23] K. Driver, H. Stahl, “Simultaneous rational approximants to Nikishin systems. II”, Acta Sci. Math. (Szeged), 61:1-4 (1995), 261–284 | MR | Zbl

[24] U. Fidalgo, G. López Lagomasino, “Rate of convergence of generalized Hermite–Padé approximants of Nikishin systems”, Constr. Approx., 23:2 (2006), 165–196 | DOI | MR | Zbl

[25] U. Fidalgo Prieto, G. López Lagomasino, “Nikishin systems are perfect”, Constr. Approx., 34:3 (2011), 297–356 | DOI | MR | Zbl

[26] U. Fidalgo Prieto, G. López Lagomasino, “Nikishin systems are perfect. The case of unbounded and touching supports”, J. Approx. Theory, 163:6 (2011), 779–811 | DOI | MR | Zbl

[27] A. A. Gonchar, E. A. Rakhmanov, “On the convergence of simultaneous Padé approximants for systems of functions of Markov type”, Proc. Steklov Inst. Math., 157 (1983), 31–50 | MR | Zbl

[28] A. A. Gonchar, E. A. Rakhmanov, “On the equilibrium problem for vector potentials”, Russian Math. Surveys, 40:4 (1985), 183–184 | DOI | MR | Zbl

[29] A. A. Gonchar, E. A. Rakhmanov, “Equilibrium measure and the distribution of zeros of extremal polynomials”, Math. USSR-Sb., 53:1 (1986), 119–130 | DOI | MR | Zbl

[30] A. A. Gonchar, E. A. Rakhmanov, V. N. Sorokin, “Hermite–Padé approximants for systems of Markov-type functions”, Sb. Math., 188:5 (1997), 671–696 | DOI | DOI | MR | Zbl

[31] A. Hardy, “Average characteristic polynomials of determinantal point processes”, Ann. Inst. Henri Poincaré Probab. Statist., 51:1 (2015), 283–303 ; (2012), arXiv: 1211.6564 | DOI | MR | Zbl

[32] A. Hardy, A. B. J. Kuijlaars, “Weakly admissible vector equilibrium problems”, J. Approx. Theory, 164:6 (2012), 854–868 | DOI | MR | Zbl

[33] A. Hardy, A. B. J. Kuijlaars, “Large deviations for a non-centered Wishart matrix”, Random Matrices Theory Appl., 2:1 (2013), 1250016, 16 pp. | DOI | MR | Zbl

[34] B. S. Kashin, P. Nevai, S. P. Suetin, V. Totik, “Editorial”, Sb. Math., 206:1 (2015), 1 | DOI | MR | Zbl

[35] B. Kashin, P. Nevai, S. Suetin, V. Totik, “Editorial”, J. of Approximation Theory, 206 (2016), iv | DOI | MR | Zbl

[36] M. G. Krein, A. A. Nudel'man, The Markov moment problem and extremal problems, Transl. Math. Monogr., 50, Amer. Math. Soc., Providence, RI, 1977, v+417 pp. | MR | MR | Zbl | Zbl

[37] A. B. J. Kuijlaars, “Multiple orthogonal polynomial ensembles”, Recent trends in orthogonal polynomials and approximation theory, Contemp. Math., 507, Amer. Math. Soc., Providence, RI, 2010, 155–176 | DOI | MR | Zbl

[38] A. B. J. Kuijlaars, A. Martínez-Finkelshtein, F. Wielonsky, “Non-intersecting squared Bessel paths and multiple orthogonal polynomials for modified Bessel weights”, Comm. Math. Phys., 286:1 (2009), 217–275 | DOI | MR | Zbl

[39] A. B. J. Kuijlaars, A. Martínez-Finkelshtein, F. Wielonsky, “Non-intersecting squared Bessel paths: critical time and double scaling limit”, Comm. Math. Phys., 308:1 (2011), 227–279 | DOI | MR | Zbl

[40] A. B. J. Kuijlaars, E. A. Rakhmanov, “Zero distributions for discrete orthogonal polynomials”, J. Comput. Appl. Math., 99:1-2 (1998), 255–274 | DOI | MR | Zbl

[41] A. B. J. Kuijlaars, W. Van Assche, “Extremal polynomials on discrete sets”, Proc. London Math. Soc. (3), 79:1 (1999), 191–221 | DOI | MR | Zbl

[42] E. M. Nikishin, “On simultaneous Padé approximants”, Math. USSR Sb., 41:4 (1982), 409–425 | DOI | MR | Zbl

[43] E. M. Nikishin, “The asymptotic behavior of linear forms for joint Padé approximations”, Soviet Math. (Iz. VUZ), 30:2 (1986), 43–52 | MR | Zbl

[44] E. M. Nikishin, V. N. Sorokin, Rational approximation and orthogonality, Transl. Math. Monogr., 92, Amer. Math. Soc., Providence, RI, 1991, viii+221 pp. | MR | MR | Zbl | Zbl

[45] L. A. Pastur, “On the spectrum of random matrices”, Theoret. and Math. Phys., 10:1 (1972), 67–74 | DOI | MR

[46] E. A. Rakhmanov, “Equilibrium measure and the distribution of zeros of exremal polynomials of a discrete variable”, Sb. Math., 187:8 (1996), 1213–1228 | DOI | DOI | MR | Zbl

[47] E. A. Rakhmanov, “The asymptotics of Hermite–Padé polynomials for two Markov-type functions”, Sb. Math., 202:1 (2011), 127–134 | DOI | MR | Zbl

[48] E. A. Rakhmanov, S. P. Suetin, “Asymptotic behaviour of the Hermite–Padé polynomials of the 1st kind for a pair of functions forming a Nikishin system”, Russian Math. Surveys, 67:5 (2012), 954–956 | DOI | DOI | MR | Zbl

[49] W. Rudin, Real and complex analysis, McGraw-Hill Book Co., New York–Toronto, ON–London, 1966, xi+412 pp. | MR | Zbl

[50] E. B. Saff, V. Totik, Logartihmic potentials with external fields, Grundlehren Math. Wiss., 316, Springer-Verlag, Berlin, 1997, xvi+505 pp. | DOI | MR | Zbl

[51] A. N. Shiryaev, O martingalnykh metodakh v zadachakh o peresechenii granits brounovskim dvizheniem, Sovr. probl. matem., 8, MIAN, M., 2007, 80 pp. | DOI | Zbl

[52] P. Simeonov, “A weighted energy problem for a class of admissible weights”, Houston J. Math., 31:4 (2005), 1245–1260 | MR | Zbl

[53] V. N. Sorokin, “Generalized Pollaczek polynomials”, Sb. Math., 200:4 (2009), 577–595 | DOI | DOI | MR | Zbl

[54] V. N. Sorokin, “On multiple orthogonal polynomials for discrete Meixner measures”, Sb. Math., 201:10 (2010), 1539–1561 | DOI | DOI | MR | Zbl

[55] H. Stahl, “Simultaneous rational approximants”, Computational methods and function theory 1994 (Penang), Ser. Approx. Decompos., 5, World Sci. Publ., River Edge, NJ, 1995, 325–349 | MR | Zbl

[56] H. Stahl, V. Totik, General orthogonal polynomials, Encyclopedia Math. Appl., 43, Cambridge Univ. Press, Cambridge, 1992, xii+250 pp. | DOI | MR | Zbl