Surfaces containing two circles through each point and decomposition of quaternionic matrices
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 72 (2017) no. 2, pp. 381-383
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{RM_2017_72_2_a5,
author = {A. A. Pakharev and M. B. Skopenkov},
title = {Surfaces containing two circles through each point and decomposition of quaternionic matrices},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {381--383},
year = {2017},
volume = {72},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2017_72_2_a5/}
}
TY - JOUR AU - A. A. Pakharev AU - M. B. Skopenkov TI - Surfaces containing two circles through each point and decomposition of quaternionic matrices JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2017 SP - 381 EP - 383 VL - 72 IS - 2 UR - http://geodesic.mathdoc.fr/item/RM_2017_72_2_a5/ LA - en ID - RM_2017_72_2_a5 ER -
%0 Journal Article %A A. A. Pakharev %A M. B. Skopenkov %T Surfaces containing two circles through each point and decomposition of quaternionic matrices %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2017 %P 381-383 %V 72 %N 2 %U http://geodesic.mathdoc.fr/item/RM_2017_72_2_a5/ %G en %F RM_2017_72_2_a5
A. A. Pakharev; M. B. Skopenkov. Surfaces containing two circles through each point and decomposition of quaternionic matrices. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 72 (2017) no. 2, pp. 381-383. http://geodesic.mathdoc.fr/item/RM_2017_72_2_a5/
[1] J. L. Coolidge, A treatise on the circle and sphere, Clarendon Press, Oxford, 1916, 603 pp. | MR | Zbl
[2] N. Lubbes, “Families of circles on surfaces”, Contrib. Alg. Geom. (to appear); 2014 (v1 – 2013), 36 pp., arXiv: 1302.6710
[3] F. Nilov, M. Skopenkov, “A surface containing a line and a circle through each point is a quadric”, Geom. Dedicata, 163:1 (2013), 301–310 ; (2012 (v1 – 2011)), 8 pp., arXiv: 1110.2338 | DOI | MR | Zbl
[4] O. Ore, “Theory of non-commutative polynomials”, Ann. of Math. (2), 34:3 (1933), 480–508 | DOI | MR | Zbl
[5] J. Schicho, “The multiple conical surfaces”, Beiträge Algebra Geom., 42:1 (2001), 71–87 | MR | Zbl