Surfaces containing two circles through each point and decomposition of quaternionic matrices
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 72 (2017) no. 2, pp. 381-383 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_2017_72_2_a5,
     author = {A. A. Pakharev and M. B. Skopenkov},
     title = {Surfaces containing two circles through each point and decomposition of quaternionic matrices},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {381--383},
     year = {2017},
     volume = {72},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2017_72_2_a5/}
}
TY  - JOUR
AU  - A. A. Pakharev
AU  - M. B. Skopenkov
TI  - Surfaces containing two circles through each point and decomposition of quaternionic matrices
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2017
SP  - 381
EP  - 383
VL  - 72
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/RM_2017_72_2_a5/
LA  - en
ID  - RM_2017_72_2_a5
ER  - 
%0 Journal Article
%A A. A. Pakharev
%A M. B. Skopenkov
%T Surfaces containing two circles through each point and decomposition of quaternionic matrices
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2017
%P 381-383
%V 72
%N 2
%U http://geodesic.mathdoc.fr/item/RM_2017_72_2_a5/
%G en
%F RM_2017_72_2_a5
A. A. Pakharev; M. B. Skopenkov. Surfaces containing two circles through each point and decomposition of quaternionic matrices. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 72 (2017) no. 2, pp. 381-383. http://geodesic.mathdoc.fr/item/RM_2017_72_2_a5/

[1] J. L. Coolidge, A treatise on the circle and sphere, Clarendon Press, Oxford, 1916, 603 pp. | MR | Zbl

[2] N. Lubbes, “Families of circles on surfaces”, Contrib. Alg. Geom. (to appear); 2014 (v1 – 2013), 36 pp., arXiv: 1302.6710

[3] F. Nilov, M. Skopenkov, “A surface containing a line and a circle through each point is a quadric”, Geom. Dedicata, 163:1 (2013), 301–310 ; (2012 (v1 – 2011)), 8 pp., arXiv: 1110.2338 | DOI | MR | Zbl

[4] O. Ore, “Theory of non-commutative polynomials”, Ann. of Math. (2), 34:3 (1933), 480–508 | DOI | MR | Zbl

[5] J. Schicho, “The multiple conical surfaces”, Beiträge Algebra Geom., 42:1 (2001), 71–87 | MR | Zbl