Right-angled polyhedra and hyperbolic 3-manifolds
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 72 (2017) no. 2, pp. 335-374 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Hyperbolic 3-manifolds whose fundamental groups are subgroups of finite index in right-angled Coxeter groups are under consideration. The construction of such manifolds is associated with of the faces of polyhedra and, in particular, with 4-colourings. The following questions are discussed: the structure of the set of right-angled polytopes in Lobachevskii space; examples of orientable and non-orientable manifolds, including the classical Löbell manifold constructed in 1931; connections between the Hamiltonian property of a polyhedron and the existence of hyperelliptic involutions of manifolds; the volumes and complexity of manifolds; isometry between hyperbolic manifolds constructed from 4-colourings. Bibliography: 89 titles.
Keywords: right-angled reflection groups, hyperbolic 3-manifolds, volumes of manifolds, colourings of polyhedra, Hamiltonian graphs, small covers.
@article{RM_2017_72_2_a2,
     author = {A. Yu. Vesnin},
     title = {Right-angled polyhedra and hyperbolic 3-manifolds},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {335--374},
     year = {2017},
     volume = {72},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2017_72_2_a2/}
}
TY  - JOUR
AU  - A. Yu. Vesnin
TI  - Right-angled polyhedra and hyperbolic 3-manifolds
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2017
SP  - 335
EP  - 374
VL  - 72
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/RM_2017_72_2_a2/
LA  - en
ID  - RM_2017_72_2_a2
ER  - 
%0 Journal Article
%A A. Yu. Vesnin
%T Right-angled polyhedra and hyperbolic 3-manifolds
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2017
%P 335-374
%V 72
%N 2
%U http://geodesic.mathdoc.fr/item/RM_2017_72_2_a2/
%G en
%F RM_2017_72_2_a2
A. Yu. Vesnin. Right-angled polyhedra and hyperbolic 3-manifolds. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 72 (2017) no. 2, pp. 335-374. http://geodesic.mathdoc.fr/item/RM_2017_72_2_a2/

[1] È. B. Vinberg, O. V. Shvartsman, “Discrete groups of motions of spaces of constant curvature”, Geometry. II: Spaces of constant curvature, Encyclopaedia Math. Sci., 29, Springer, Berlin, 1993, 139–248 | MR | Zbl

[2] J. A. Wolf, Spaces of constant curvature, 2nd ed., Univ. California, Berkeley, CA, 1972, xv+408 pp. | MR | MR | Zbl | Zbl

[3] F. Klein, Vorlesungen über nicht-euklidische Geometrie, Grundlehren Math. Wiss., 26, 3. Aufl., J. Springer, Berlin, 1928, xii+326 pp. | MR | Zbl

[4] F. Löbell, “Beispiele geschlossener dreidimensionaler Clifford–Kleinischer Räume negativer Krümmung”, Ber. Verh. Sächs. Akad. Leipzig Math.-Phys. Kl., 83 (1931), 167–174 | Zbl

[5] H. Seifert, C. Weber, “Die beiden Dodekaederräume”, Math. Z., 37:1 (1933), 237–253 | DOI | MR | Zbl

[6] E. M. Andreev, “On convex polyhedra in Lobačevskiǐ spaces”, Math. USSR-Sb., 10:3 (1970), 413–440 | DOI | MR | Zbl

[7] V. V. Nikulin, “On the classification of arithmetic groups generated by reflections in Lobachevsky spaces”, Math. USSR-Izv., 18:1 (1982), 99–123 | DOI | MR | Zbl

[8] G. Dufour, “Notes on right-angled Coxeter polyhedra in hyperbolic spaces”, Geom. Dedicata, 147 (2010), 277–282 | DOI | MR | Zbl

[9] A. Kolpakov, “On the optimality of the ideal right-angled 24-cell”, Algebr. Geom. Topol., 12:4 (2012), 1941–1960 | DOI | MR | Zbl

[10] T. Inoue, “Organizing volumes of right-angled hyperbolic polyhedra”, Algebr. Geom. Topol., 8:3 (2008), 1523–1565 | DOI | MR | Zbl

[11] A. Yu. Vesnin, “Volumes of hyperbolic Löbell 3-manifolds”, Math. Notes, 64:1 (1998), 15–19 | DOI | DOI | MR | Zbl

[12] J. G. Ratcliffe, Foundations of hyperbolic manifolds, Grad. Texts in Math., 149, Springer-Verlag, New York, 1994, xii+747 pp. | DOI | MR | Zbl

[13] A. Yu. Vesnin, “Three-dimensional hyperbolic manifolds of Löbell type”, Sib. Math. J., 28:5 (1987), 731–734 | DOI | MR | Zbl

[14] M. W. Davis, T. Januszkiewicz, “Convex polytopes, Coxeter orbifolds and torus actions”, Duke Math. J., 62:2 (1991), 417–451 | DOI | MR | Zbl

[15] V. M. Buchstaber, T. E. Panov, “On manifolds defined by 4-colourings of simple 3-polytopes”, Russian Math. Surveys, 71:6 (2016), 1137–1139 | DOI | DOI | MR

[16] S. Matveev, Algorithmic topology and classification of 3-manifolds, Algorithms Comput. Math., 9, 2nd ed., Springer, Berlin, 2007, xiv+492 pp. | DOI | MR | Zbl

[17] S. V. Matveev, “Tabulation of three-dimensional manifolds”, Russian Math. Surveys, 60:4 (2005), 673–698 | DOI | DOI | MR | Zbl

[18] M. W. Davis, The geometry and topology of Coxeter groups, London Math. Soc. Monogr. Ser., 32, Princeton Univ. Press, Princeton, NJ, 2008, xvi+584 pp. | MR | Zbl

[19] J. W. Alexander, “Note on Riemann spaces”, Bull. Amer. Math. Soc., 26:8 (1920), 370–372 | DOI | MR | Zbl

[20] J. Montesinos, “A representation of closed, orientable 3-manifolds as 3-fold branched coverings of $S^{3}$”, Bull. Amer. Math. Soc., 80:5 (1974), 845–846 | DOI | MR | Zbl

[21] H. M. Hilden, “Every closed orientable 3-manifold is a 3-fold branched covering space of $S^{3}$”, Bull. Amer. Math. Soc., 80:6 (1974), 1243–1244 | DOI | MR | Zbl

[22] U. Hirsch, “Über offene Abbildungen auf die 3-Sphäre”, Math. Z., 140:3 (1974), 203–230 | DOI | MR | Zbl

[23] M. Reni, B. Zimmermann, “On hyperelliptic involutions of hyperbolic 3-manifolds”, Math. Ann., 321:2 (2001), 295–317 | DOI | MR | Zbl

[24] A. D. Mednykh, “Three-dimensional hyperelliptic manifolds”, Ann. Global Anal. Geom., 8:1 (1990), 13–19 | DOI | MR | Zbl

[25] A. Yu. Vesnin, A. D. Mednykh, “Three-dimensional hyperelliptic manifolds and Hamiltonian graphs”, Sib. Math. J., 40:4 (1999), 628–643 | DOI | MR | Zbl

[26] A. Yu. Vesnin, A. D. Mednykh, “Spherical Coxeter groups and hyperelliptic 3-manifolds”, Math. Notes, 66:2 (1999), 135–138 | DOI | DOI | MR | Zbl

[27] A. Mednykh, A. Vesnin, “Colourings of polyhedra and hyperelliptic 3-manifolds”, Recent advances in group theory and low-dimensional topology (Pusan, 2000), Res. Exp. Math., 27, Lemgo, Heldermann, 2003, 123–131 | MR | Zbl

[28] A. Kolpakov, B. Martelli, S. Tschantz, “Some hyperbolic three-manifolds that bound geometrically”, Proc. Amer. Math. Soc., 143:9 (2015), 4103–4111 | DOI | MR | Zbl

[29] A. Kolpakov, L. Slavich, “Hyperbolic 4-manifolds, colourings and mutations”, Proc. Lond. Math. Soc. (3), 113:2 (2016), 163–184 | DOI | MR | Zbl

[30] È. B. Vinberg, “Hyperbolic reflection groups”, Russian Math. Surveys, 40:1 (1985), 31–75 | DOI | MR | Zbl

[31] È. B. Vinberg, “The non-existence of crystallographic groups of reflections in Lobachevskij spaces of large dimension”, Trans. Moscow Math. Soc., 1985 (1985), 75–112 | MR | Zbl

[32] M. N. Prokhorov, “The absence of discrete reflection groups with noncompact fundamental polyhedron of finite volume in Lobachevsky space of large dimension”, Math. USSR-Izv., 28:2 (1987), 401–411 | DOI | MR | Zbl

[33] A. G. Khovanskii, “Hyperplane sections of polyhedra, toroidal manifolds, and discrete groups in Lobachevskii space”, Funct. Anal. Appl., 20:1 (1986), 41–50 | DOI | MR | Zbl

[34] L. Potyagailo, E. Vinberg, “On right-angled reflection groups in hyperbolic spaces”, Comment. Math. Helv., 80:1 (2005), 63–73 | DOI | MR | Zbl

[35] H. S. M. Coxeter, Regular polytopes, Methuen Co., Ltd., London; Pitman Publishing Corporation, New York, 1948, xix+321 pp. | MR | Zbl

[36] F. Lannér, “On complexes with transitive groups of automorphisms”, Comm. Sém., Math. Univ. Lund [Medd. Lunds Univ. Mat. Sem.], 11 (1950), 1–71 | MR | Zbl

[37] J. Nonaka, “The number of cusps of right-angled polyhedra in hyperbolic spaces”, Tokyo J. Math., 38:2 (2015), 539–560 | DOI | MR | Zbl

[38] È. B. Vinberg, “Discrete groups generated by reflections in Lobačevskiĭ spaces”, Math. USSR-Sb., 1:3 (1967), 429–444 | DOI | MR | Zbl

[39] M. Belolipetsky, “Arithmetic hyperbolic reflection groups”, Bull. Amer. Math. Soc. (N. S.), 53:3 (2016), 437–475 | DOI | MR | Zbl

[40] A. V. Pogorelov, “A regular partition of Lobachevskian space”, Math. Notes, 1:1 (1967), 3–5 | DOI | MR | Zbl

[41] T. Došlić, “Cyclical edge-connectivity of fullerene graphs and $(k,6)$-cages”, J. Math. Chem., 33:2 (2003), 103–112 | DOI | MR | Zbl

[42] V. M. Buchstaber, N. Yu. Erokhovets, “Truncations of simple polytopes and applications”, Proc. Steklov Inst. Math., 289 (2015), 104–133 | DOI | DOI | MR | Zbl

[43] V. Andova, F. Kardoš, R. Škrekovski, “Mathematical aspects of fullerenes”, Ars Math. Contemp., 11:2 (2016), 353–379 | MR | Zbl

[44] P. Buser, A. Mednykh, A. Vesnin, “Lambert cube and the Löbell polyhedron revisited”, Adv. Geom., 12:3 (2012), 525–548 | DOI | MR | Zbl

[45] R. K. W. Roeder, “Constructing hyperbolic polyhedra using Newton's method”, Experimental. Math., 16:4 (2007), 463–492 | DOI | MR | Zbl

[46] M. Endo, H. W. Kroto, “Formation of carbon nanofibers”, J. Phys. Chem., 96:17 (1992), 6941–6944 | DOI

[47] A. Vesnin, “Volumes and normalized volumes of right-angled hyperbolic polyhedra”, Atti Semin. Mat. Fis. Univ. Modena Reggio Emilia, 57 (2010), 159–169 | MR | Zbl

[48] T. Inoue, “The 825 smallest right-angled hyperbolic polyhedra”, 2015, 27 pp., arXiv: 1512.01761

[49] D. Heard, Computer\;program “Orb” http://www.ms.unimelb.edu.au/~snap/orb.html

[50] C. K. Atkinson, “Volume estimates for equiangular hyperbolic Coxeter polyhedra”, Algebr. Geom. Topol., 9:2 (2009), 1225–1254 | DOI | MR | Zbl

[51] E. M. Andreev, “On convex polyhedra of finite volume in Lobačevskiĭ space”, Math. USSR-Sb., 12:2 (1970), 255–259 | DOI | MR | Zbl

[52] I. Rivin, “A characterization of ideal polyhedra in hyperbolic 3-space”, Ann. of Math. (2), 143:1 (1996), 51–70 | DOI | MR | Zbl

[53] W. Thurston, The geometry and topology of three-manifolds, Princeton lecture notes (unpublished), 1980, vii+360 pp.; electronic version, 2002, http://msri.org/publications/books/gt3m/

[54] M. Gromov, “Hyperbolic manifolds according to Thurston and Jørgensen”, Séminaire N. Bourbaki, v. 1979/80, Lecture Notes in Math., 842, Springer, Berlin–New York, 1981, 40–53 | MR | Zbl

[55] G. M. Ziegler, Lectures on polytopes, Grad. Texts in Math., 152, Springer-Verlag, New York, 1995, x+370 pp. | DOI | MR | Zbl

[56] G. Brinkmann, S. Greenberg, C. Greenhill, B. D. McKay, R. Thomas, P. Wollan, “Generation of simple quadrangulations of the sphere”, Discrete Math., 305:1-3 (2005), 33–54 | DOI | MR | Zbl

[57] N. K. Al-Jubouri, “On non-orientable hyperbolic 3-manifolds”, Quart. J. Math. Oxford Ser. (2), 31:121 (1980), 9–18 | DOI | MR | Zbl

[58] N. Alon, T. H. Marshall, “Homomorphisms of edge-colored graphs and Coxeter groups”, J. Algebraic Combin., 8:1 (1998), 5–13 | DOI | MR | Zbl

[59] K. Appel, W. Haken, Every planar map is four colorable, Contemp. Math., 98, Amer. Math. Soc., Providence, RI, 1989, xvi+741 pp. | DOI | MR | Zbl

[60] H. Nakayama, Y. Nishimura, “The orientability of small covers and coloring simple polytopes”, Osaka J. Math., 42:1 (2005), 243–256 | MR | Zbl

[61] I. V. Izmestiev, “Three-dimensional manifolds defined by coloring a simple polytope”, Math. Notes, 69:3 (2001), 340–346 | DOI | DOI | MR | Zbl

[62] W. Magnus, A. Karrass, D. Solitar, Combinatorial group theory. Presentations of groups in terms of generators and relations, Pure Appl. Math., 13, Interscience Publishers [John Wiley Sons, Inc.], New York–London–Sydney, 1966, xii+444 pp. | MR | MR | Zbl | Zbl

[63] C. Maclachlan, A. W. Reid, The arithmetic of hyperbolic 3-manifolds, Grad. Texts in Math., 219, Springer-Verlag, New York, 2003, xiv+463 pp. | DOI | MR | Zbl

[64] A. Yu. Vesnin, “Three-dimensional hyperbolic manifolds with general fundamental polyhedron”, Math. Notes, 49:6 (1991), 575–577 | DOI | MR | Zbl

[65] K. Takeuchi, “Arithmetic triangle groups”, J. Math. Soc. Japan, 29:1 (1977), 91–106 | DOI | MR | Zbl

[66] O. Antolin-Camarena, G. R. Maloney, R. K. W. Roeder, “Computing arithmetic invariants for hyperbolic reflection groups”, Complex dynamics, A. K. Peters, Wellesley, MA, 2009, 597–631 | DOI | MR | Zbl

[67] A. Garrison. R. Scott, “Small covers of the dodecahedron and the 120-cell”, Proc. Amer. Math. Soc., 131:3 (2003), 963–971 | DOI | MR | Zbl

[68] M. Reni, “Dihedral branched coverings of hyperbolic orbifolds”, Geom. Dedicata, 67:3 (1997), 271–283 | DOI | MR | Zbl

[69] A. D. Mednykh, “Automorphism groups of three-dimensional hyperbolic manifolds”, Soviet Math. Dokl., 32:3 (1985), 633–636 | MR | Zbl

[70] A. Borel, “Commensurability classes and volumes of hyperbolic 3-manifolds”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 8:1 (1981), 1–33 | MR | Zbl

[71] V. M. Bukhshtaber, N. Yu. Erokhovets, M. Masuda, T. E. Panov, S. Pak, “Kogomologicheskaya zhestkost mnogoobrazii, zadavaemykh trekhmernymi mnogogrannikami”, UMN, 72:2(434), 3–66

[72] S. V. Matveev, A. T. Fomenko, “Constant energy surfaces of Hamiltonian systems, enumeration of three-dimensional manifolds in increasing order of complexity, and computation of volumes of closed hyperbolic manifolds”, Russian Math. Surveys, 43:1 (1988), 3–24 | DOI | MR | Zbl

[73] J. Weeks, Hyperbolic structures on 3-manifolds, Ph.D. thesis, Princeton Univ., 1985, 83 pp. | MR

[74] A. D. Mednykh, A. Yu. Vesnin, “Löbell manifolds revised”, Sib. elektron. matem. izv., 4 (2007), 605–609 | MR | Zbl

[75] A. Yu. Vesnin, S. V. Matveev, E. A. Fominykh, “Slozhnost trekhmernykh mnogoobrazii: tochnye znacheniya i otsenki”, Sib. elektron. matem. izv., 8 (2011), 341–364 | MR | Zbl

[76] A. Yu. Vesnin, S. V. Matveev, C. Petronio, “Two-sided complexity bounds for Löbell manifolds”, Dokl. Math., 76:2 (2007), 689–691 | DOI | MR | Zbl

[77] S. Matveev, C. Petronio, A. Vesnin, “Two-sided asymptotic bounds for the complexity of some closed hyperbolic three-manifolds”, J. Aust. Math. Soc., 86:2 (2009), 205–219 | DOI | MR | Zbl

[78] A. Yu. Vesnin, A. D. Mednykh, “Three-dimensional hyperbolic manifolds of small volume with three hyperelliptic involutions”, Sib. Math. J., 40:5 (1999), 873–886 | DOI | MR | Zbl

[79] R. Kirby (ed.), “Problems in low-dimensional topology”, Geometric topology (Athens, GA, 1993), AMS/IP Stud. Adv. Math., 2.2, ed. W. H. Kazez, Amer. Math. Soc., Providence, RI, 1997, 35–473 | MR | Zbl

[80] F. Kardoš, A computer-assisted proof of a Barnette's conjecture: not only fullerene graphs are hamiltonian, 2014, 29 pp., arXiv: 1409.2440v1

[81] M. Culler, N. Dunfield, M. Goerner, J. Weeks, SnapPy – a computer program for studying the geometry and topology of 3-manifolds, 2017 (v1 – 2009), \par http://snappy.computop.org

[82] W. W. R. Ball, H. S. M. Coxeter, Mathematical recreations essays, 12th ed., Univ. of Toronto Press, Toronto, ON, 1974, xvii+428 pp. | MR | MR | Zbl

[83] E. Grinbergs, On planar regular graphs degree three without Hamiltonian cycles, 2009, 8 pp., arXiv: 0908.2563 | MR | Zbl

[84] A. Kolpakov, B. Martelli, “Hyperbolic four-manifolds with one cusp”, Geom. Funct. Anal., 23:6 (2013), 1903–1933 | DOI | MR | Zbl

[85] M. Görner, “Regular tessellation link complements”, Experimental Math., 24:2 (2015), 225–246 | DOI | MR | Zbl

[86] M. Lackenby, “The volume of hyperbolic alternating link complements”, With an appendix by I. Agol and D. Thurston, Proc. London Math. Soc. (3), 88:1 (2004), 204–224 | DOI | MR | Zbl

[87] E. Chesebro, J. DeBlois, H. Wilton, “Some virtually special hyperbolic 3-manifold groups”, Comment. Math. Helv., 87:3 (2012), 727–787 | DOI | MR | Zbl

[88] A. Hatcher, “Hyperbolic structures of arithmetic type on some link complements”, J. London Math. Soc. (2), 27:2 (1983), 345–355 | DOI | MR | Zbl

[89] D. D. Long, A. W. Reid, “All flat manifolds are cusps of hyperbolic orbifolds”, Algebr. Geom. Topol., 2 (2002), 285–296 | DOI | MR | Zbl