Mots-clés : filtrations
@article{RM_2017_72_2_a1,
author = {A. M. Vershik},
title = {The theory of filtrations of subalgebras, standardness, and independence},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {257--333},
year = {2017},
volume = {72},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2017_72_2_a1/}
}
A. M. Vershik. The theory of filtrations of subalgebras, standardness, and independence. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 72 (2017) no. 2, pp. 257-333. http://geodesic.mathdoc.fr/item/RM_2017_72_2_a1/
[1] D. Z. Arov, “To the history of the appearance of the notion of the $\varepsilon$-entropy of an authomorphism of a Lebesgue space and $(\varepsilon,T)$-entropy of a dynamical system with continuous time”, J. Math. Sci. (N. Y.), 215:6 (2016), 677–692 | DOI | MR | Zbl
[2] R. M. Belinskaya, “Partitions of Lebesgue space in trajectories defined by ergodic automorphisms”, Funct. Anal. Appl., 2:3 (1968), 190–199 | DOI | MR | Zbl
[3] A. Connes, J. Feldman, B. Weiss, “An amenable equivalence relation is generated by single transformation”, Ergodic Theory Dynam. Systems, 1:4 (1981), 431–450 | DOI | MR | Zbl
[4] F. den Hollander, J. E. Steif, “Random walk in random scenery: a survey of some recent results”, Dynamics and stochastics, IMS Lecture Notes Monogr. Ser., 48, Inst. Math. Statist., Beachwood, OH, 2006, 53–65 | DOI | MR | Zbl
[5] R. L. Dobrushin, “Perturbation methods of the theory of Gibbsian fields”, Lectures on probability theory and statistics (Saint-Flour, 1994), Lecture Notes in Math., 1648, Springer, Berlin, 1996, 1–66 | DOI | MR | Zbl
[6] R. Dougherty, S. Jackson, A. S. Kechris, “The structure of hyperfinite Borel equivalence relations”, Trans. Amer. Math. Soc., 341:1 (1994), 193–225 | DOI | MR | Zbl
[7] L. Dubins, J. Feldman, M. Smorodinsky, B. Tsirelson, “Decreasing sequences of $\sigma$-fields and a measure change for Brownian motion”, Ann. Probab., 24:2 (1996), 882–904 | DOI | MR | Zbl
[8] H. A. Dye, “On groups of meaure preserving transformation. I”, Amer. J. Math., 81 (1959), 119–159 | DOI | MR | Zbl
[9] E. B. Dynkin, “Boundary theory of Markov processes (the discrete case)”, Russian Math. Surveys, 24:2 (1969), 1–42 | DOI | MR | Zbl
[10] E. B. Dynkin, “The space of exits of a Markov process”, Russian Math. Surveys, 24:4 (1969), 89–157 | DOI | MR | Zbl
[11] E. B. Dynkin, “Entrance and exit spaces for a Markov process”, Actes du Congrès International des Mathématiciens (Nice, 1970), v. 2, Gauthier-Villars, Paris, 1971, 507–512 | MR | Zbl
[12] M. Émery, “Espace probabilisés filtrés: de la théorie de Vershik au mouvement brownien, via des idées de Tsirelson”, Séminaire Bourbaki, v. 2000/2001, Astérisque, 282, Soc. Math. France, Paris, 2002, vii, 63–83, Exp. No 882 | MR | MR | Zbl | Zbl
[13] M. Émery, W. Schachermayer, “Brownian filtrations are not stable under equivalent time-changes”, Séminaire de Probabilités, v. XXXIII, Lecture Notes in Math., 1709, Springer, Berlin, 1999, 267–276 | DOI | MR | Zbl
[14] M. Émery, W. Schachermayer, “On Vershik's standardness criterion and Tsirelson's notion of cosiness”, Séminaire de Probabilités, v. XXXV, Lecture Notes in Math., 1755, Springer, Berlin, 2001, 265–305 | DOI | MR | Zbl
[15] J. Feldman, C. C. Moore, “Ergodic equivalence relations, cohomology, and von Neumann algebras”, Bull. Amer. Math. Soc., 81:5 (1975), 921–924 | DOI | MR | Zbl
[16] J. Feldman, D. J. Rudolph, “Standardness of sequences of $\sigma$-fields given by certain endomorphisms”, Fund. Math., 157:2-3 (1998), 175–189 | MR | Zbl
[17] J. Feldman, B. Tsirelson, “Decreasing sequences of sigma-fields and a measure change for Brownian motion. II”, Ann. Probab., 24:2 (1996), 905–911 | DOI | MR | Zbl
[18] F. M. Goodman, P. de la Harpe, V. F. R. Jones, Coxeter graphs and towers of algebras, Math. Sci. Res. Inst. Publ., 14, Springer-Verlag, New York, 1989, x+288 pp. | DOI | MR | Zbl
[19] M. Gromov, Metric structures for Riemannian and non-Riemannian spaces, Progr. Math., 152, Birkhäuser Boston, Inc., Boston, MA, 1999, xx+585 pp. | MR | Zbl
[20] B. M. Gurevich, “Toward the history of dynamical entropy: comparing two definitions”, J. Math. Sci. (N. Y.), 215:6 (2016), 693–699 | DOI | MR | Zbl
[21] O. V. Guseva, “Klassifikatsiya posledovatelnostei izmerimykh razbienii”, Vestn. LGU. Ser. matem., mekh., astron., 20:1 (1965), 14–23 | MR | Zbl
[22] D. Heicklen, C. Hoffman, D. J. Rudolph, “Entropy and dyadic equivalence of random walks on a random scenery”, Adv. Math., 156:2 (2000), 157–179 | DOI | MR | Zbl
[23] C. Hoffman, D. J. Rudolph, “A dyadic endomorphism which is Bernoulli but not standard”, Israel J. Math., 130 (2002), 365–379 | DOI | MR | Zbl
[24] É. Janvresse, T. de la Rue, Y. Velenik, “Self-similar corrections to the ergodic theorem for the Pascal-adic transformation”, Stoch. Dyn., 5:1 (2005), 1–25 | DOI | MR | Zbl
[25] É. Janvresse, S. Laurent, T. de la Rue, Standardness of monotonic Markov filtrations, 2015, 29 pp., arXiv: 1501.02166
[26] V. A. Kaimanovich, A. M. Vershik, “Random walks on discrete groups: boundary and entropy”, Ann. Probab., 11:3 (1983), 457–490 | DOI | MR | Zbl
[27] S. A. Kalikow, “$T$, $T^{-1}$ transformation is not loosely Bernoulli”, Ann. of Math. (2), 115:2 (1982), 393–409 | DOI | MR | Zbl
[28] A. B. Katok, “Monotone equivalence in ergodic theory”, Math. USSR-Izv., 11:1 (1977), 99–146 | DOI | MR | Zbl
[29] A. Katok, B. Hasselblatt, Introduction to the modern theory of dynamical systems, Encyclopedia Math. Appl., 54, Cambridge Univ. Press, Cambridge, 1995, xviii+802 pp. | DOI | MR | Zbl
[30] S. V. Kerov, “Combinatorial examples in the theory of $AF$-algebras”, J. Soviet Math., 59:5 (1992), 1063–1071 | DOI | MR | Zbl
[31] S. V. Kerov, “Generalized Hall–Littlewood symmetric functions and orthogonal polynomials”, Representation theory and dynamical systems, Adv. Soviet Math., 9, Amer. Math. Soc., Providence, RI, 1992, 67–94 | MR | Zbl
[32] S. V. Kerov, Asymptotic representation theory of the symmetric group and its applications in analysis, with a foreword by A. M. Vershik, Transl. Math. Monogr., 219, Amer. Math. Soc., Providence, RI, 2003, xvi+201 pp. | MR | Zbl
[33] A. N. Kolmogorov, Osnovnye ponyatiya teorii veroyatnostei, 3-e izd., FAZIS, M., 1998, 144 pp. ; A. N. Kolmogorov, Foundations of the theory of probability, 2nd ed., Chelsea Publishing Co., New York, 1956, viii+84 СЃ. ; A. N. Kolmogoroff, Grundbegriffe der Wahrscheinlichkeitsrechnung, Ergeb. Math. Grenzgeb., 2, No 3, Springer, Berlin, 1933, iv+62 pp. | MR | Zbl | MR | Zbl | Zbl
[34] A. N. Kolmogorov, “Novyi metricheskii invariant tranzitivnykh dinamicheskikh sistem i avtomorfizmov prostranstva Lebega”, Dokl. AN SSSR, 119:5 (1958), 861–864 | MR | Zbl
[35] A. N. Kolmogorov, “Ob entropii na edinitsu vremeni kak metricheskom invariante avtomorfizmov”, Dokl. AN SSSR, 124:4 (1959), 754–755 | MR | Zbl
[36] R. Kotecký, D. Preiss, “The use of projective limits in classical statistical mechanics and Euclidean quantum field theory”, Czechoslovak J. Phys. B, 30:1 (1980), 23–32 | DOI | MR
[37] A. A. Lodkin, A. M. Vershik, “Approximation for actions of amenable groups and transversal automorphisms”, Operator algebras and their connections with topology and ergodic theory (Buşteni, 1983), Lecture Notes in Math., 1132, Springer, Berlin, 1985, 331–346 | DOI | MR | Zbl
[38] S. Laurent, “On standardness and I-cosiness”, Séminaire de Probabilités, v. XLIII, Lecture Notes in Math., 2006, Springer, Berlin, 2011, 127–186 | DOI | MR | Zbl
[39] S. Laurent, “On Vershikian and I-cosy random variables and filtrations”, Teoriya veroyatn. i ee primen., 55:1 (2010), 104–132 ; Theory Probab. Appl., 55:1 (2011), 54–76 | DOI | MR | Zbl | DOI
[40] S. Laurent, “Standardness and nonstandardness of next-jump time filtrations”, Electron. Commun. Probab., 18 (2013), 56, 11 pp. | DOI | MR | Zbl
[41] X. Méla, K. Petersen, “Dynamical properties of the Pascal adic transformation”, Ergodic Theory Dynam. Systems, 25:1 (2005), 227–256 | DOI | MR | Zbl
[42] D. S. Ornstein, Ergodic theory, randomness, and dynamical systems, Yale Math. Monogr., 5, Yale Univ. Press, New Haven, CT–London, 1974, vii+141 pp. | MR | MR | Zbl
[43] D. S. Ornstein, B. Weiss, “Ergodic theory of amenable actions. I. The Rohlin lemma”, Bull. Amer. Math. Soc. (N. S.), 2:1 (1980), 161–164 | DOI | MR | Zbl
[44] D. S. Ornstein, B. Weiss, “Entropy and isomorphism theorems for actions of amenable groups”, J. Anal. Math., 48 (1987), 1–141 | DOI | MR | Zbl
[45] V. A. Rohlin, On the fundamental ideas of measure theory, Amer. Math. Soc. Transl., 1952, No 71, Amer. Math. Soc., Providence, RI, 1952, 55 pp. | MR | MR | Zbl
[46] V. A. Rokhlin, “Metricheskaya klassifikatsiya izmerimykh funktsii”, UMN, 12:2(74) (1957), 169–174 | MR | Zbl
[47] V. A. Rokhlin, “Lectures on the entropy theory of measure-preserving transformations”, Russian Math. Surveys, 22:5 (1967), 1–52 | DOI | MR | Zbl
[48] V. A. Rokhlin, Izbrannye raboty. Vospominaniya o V. A. Rokhline, materialy k biografii, 2-e izd., MTsNMO, 2010, 576 pp. | MR | Zbl
[49] M. Rosenblatt, Markov processes. Structure and asymptotic behavior, Grundlehren Math. Wiss., 184, Springer-Verlag, 1971, New York–Heidelberg pp. | MR | Zbl
[50] B. A. Rubštein, “On decreasing sequences of measurable partitions”, Soviet Math. Dokl., 13 (1972), 962–965 | MR | Zbl
[51] B.-Z. Rubshtein, “Lacunary isomorphism of decreasing sequences of measurable partitions”, Israel J. Math., 97 (1997), 317–345 | DOI | MR | Zbl
[52] K. Schmidt, “A probabilistic proof of ergodic decomposition”, Sankhyā Ser. A, 40:1 (1978), 10–18 | MR | Zbl
[53] Ya. G. Sinai, “O ponyatii entropii dinamicheskoi sistemy”, Dokl. AN SSSR, 124:4 (1959), 768–771 | MR | Zbl
[54] R. P. Stanley, Ordered structures and partitions, Mem. Amer. Math. Soc., 119, Amer. Math. Soc., Providence, RI, 1972, iii+104 pp. | MR | Zbl
[55] R. P. Stanley, Enumerative combinatorics, v. 2, Cambridge Stud. Adv. Math., 62, Cambridge Univ. Press, Cambridge, 1999, xii+581 pp. | DOI | MR | Zbl
[56] A. M. Stepin, “On entropy invariants of decreasing sequences of measurable partitions”, Funct. Anal. Appl., 5:3 (1971), 237–240 | DOI | MR | Zbl
[57] N. Tsilevich, A. Vershik, M. Yor, “An infinite-dimensional analogue of the Lebesgue measure and distinguished properties of the gamma process”, J. Funct. Anal., 185:1 (2001), 274–296 | DOI | MR | Zbl
[58] A. M. Vershik, “Theorem on lacunary isomorphisms of monotonic sequences of partitions”, Funct. Anal. Appl., 2:3 (1968), 200–203 | DOI | MR | Zbl
[59] A. M. Vershik, “Decreasing sequences of measurable partitions and their applications”, Soviet Math. Dokl., 11 (1970), 1007–1011 | MR | Zbl
[60] A. M. Vershik, “Nonmeasurable decompositions, orbit theory, algebras of operators”, Soviet Math. Dokl., 12 (1971), 1218–1222 | MR | Zbl
[61] P. B. Zatitskiy, F. V. Petrov, “Correction of metrics”, J. Math. Sci. (N. Y.), 181:6 (2012), 867–870 | DOI | MR | Zbl
[62] A. M. Vershik, “Continuum of pairwise nonisomorphic dyadic sequences”, Funct. Anal. Appl., 5:3 (1971), 182–184 | DOI | MR | Zbl
[63] A. M. Vershik, “Ustroistvo ruchnykh razbienii”, UMN, 27:3(165) (1972), 195–196 | MR | Zbl
[64] A. M. Vershik, “Four definitions of the scale of an automorphism”, Funct. Anal. Appl., 7:3 (1973), 169–181 | DOI | MR | Zbl
[65] A. M. Vershik, Approksimatsiya v teorii mery, Dis. ... dokt. fiz.-matem. nauk, LGU, L., 1973, 302 pp.
[66] A. M. Vershik, “On D. Ornstein's papers, weak dependence conditions and classes of stationary measures”, Theory Probab. Appl., 21 (1977), 655–657 | Zbl
[67] A. M. Vershik, “Uniform algebraic approximation of shift and multiplication operators”, Soviet Math. Dokl., 24:1 (1981), 97–100 | MR | Zbl
[68] A. M. Vershik, “A theorem on the Markov periodic approximation in ergodic theory”, J. Soviet Math., 28:5 (1985), 667–674 | DOI | MR | Zbl
[69] A. M. Vershik, “Theory of decreasing sequences of measurable partitions”, St. Petersburg Math. J., 6:4 (1995), 705–761 | MR | Zbl
[70] A. M. Vershik, “Classification of measurable functions of several variables and invariantly distributed random matrices”, Funct. Anal. Appl., 36:2 (2002), 93–105 | DOI | DOI | MR | Zbl
[71] A. M. Vershik, “Sluchainye metricheskie prostranstva i universalnoe prostranstvo Urysona”, Fundamentalnaya matematika segodnya, MTsNMO, M., 2003, 54–88 | MR | Zbl
[72] A. M. Vershik, “Random metric spaces and universality”, Russian Math. Surveys, 59:2 (2004), 259–295 | DOI | DOI | MR | Zbl
[73] A. M. Vershik, “Informatsiya, entropiya, dinamika”, Matematika KhKh veka. Vzglyad iz Peterburga, MTsMNO, M., 2010, 47–76
[74] A. M. Vershik, “Dynamics of metrics in measure spaces and their asymptotics invariants”, Markov Process. Related Fields, 16:1 (2010), 169–184 | MR | Zbl
[75] A. M. Vershik, “The Pascal automorphism has a continuous spectrum”, Funct. Anal. Appl., 45:3 (2011), 173–186 | DOI | DOI | MR | Zbl
[76] A. M. Vershik, “On classification of measurable functions of several variables”, J. Math. Sci. (N. Y.), 190:3 (2013), 427–437 | DOI | MR | Zbl
[77] A. M. Vershik, “The problem of describing central measures on the path spaces of graded graphs”, Funct. Anal. Appl., 48:4 (2014), 256–271 | DOI | DOI | MR | Zbl
[78] A. M. Vershik, “Equipped graded graphs, projective limits of simplices, and their boundaries”, J. Math. Sci. (N. Y.), 209:6 (2015), 860–873 | DOI | MR | Zbl
[79] A. M. Vershik, “Standardness as an invariant formulation of independence”, Funct. Anal. Appl., 49:4 (2015), 253–263 | DOI | DOI | MR | Zbl
[80] A. M. Vershik, “Several remarks on Pascal automorphism and infinite ergodic theory”, Armen. J. Math., 7:2 (2015), 85–96 | MR | Zbl
[81] A. M. Vershik, “Smoothness and standardness in the theory of $AF$-algebras and in the problem on invariant measures”, Probability and statistical physics in St. Petersburg, Proc. Sympos. Pure Math., 91, Amer. Math. Soc., Providence, RI, 2016, 423–436 | MR
[82] A. M. Vershik, “Asymptotic theory of path spaces of graded graphs and its applications”, Jpn. J. Math., 11:2 (2016), 151–218 | DOI | MR | Zbl
[83] A. M. Vershik, A. L. Fedorov, “Trajectory theory”, J. Soviet Math., 38:2 (1987), 1799–1822 | DOI | MR | Zbl
[84] A. M. Vershik, A. D. Gorbul'skii, “Scaled entropy of filtrations of $\sigma$-fields”, Theory Probab. Appl., 52:3 (2008), 493–508 | DOI | DOI | MR | Zbl
[85] A. M. Vershik, U. Haböck, “On the classification problem of measurable functions in several variables and on matrix distributions”, Veroyatnost i statistika. 22, Zap. nauch. sem. POMI, 441, POMI, SPb., 2015, 119–143 ; J. Math. Sci. (N. Y.), 219:5 (2016), 683–699 | MR | Zbl | DOI
[86] “Locally semisimple algebras. Combinatorial theory and the $K_0$-functor”, J. Soviet Math., 38:2 (1987), 1701–1733 | DOI | MR | Zbl
[87] A. M. Vershik, S. V. Kerov, “Asymptotic of the largest and the typical dimensions of irreducible representations of a symmetric group”, Funct. Anal. Appl., 19:1 (1985), 21–31 | DOI | MR | Zbl
[88] I. P. Kornfel'd, A. M. Vershik, “General ergodic theory of transformation groups with invariant measure. Chapter 4. Periodic approximations and their applications. Ergodic theorems, spectral and entropy theory for general group actions”, Dynamical systems II. Ergodic theory with applications to dynamical systems and statistical mechanics, Encyclopaedia Math. Sci., 2, Springer, Berlin, 1989, 59–77 | DOI | MR | Zbl
[89] A. M. Vershik, A. N. Livshits, “Adic models of ergodic transformations, spectral theory, substitutions, and related topics”, Representation theory and dynamical systems, Adv. Soviet Math., 9, Amer. Math. Soc., Providence, RI, 1992, 185–204 | MR | Zbl
[90] A. M. Vershik, A. V. Malyutin, “Phase transition in the exit boundary problem for random walks on groups”, Funct. Anal. Appl., 49:2 (2015), 86–96 | DOI | DOI | MR | Zbl
[91] A. M. Vershik, P. B. Zatitskii, “Universalnaya adicheskaya approksimatsiya, invariantnye mery i masshtabirovannaya entropiya”, Izv. RAN. Ser. matem., 2017 (to appear) ; РџСЂРμРїСЂРёРЅС‚ РџРћРњР� 16/2016, РџРћРњР�, РЎРџР±., 2016
[92] A. M. Vershik, P. B. Zatitskiy, F. V. Petrov, “Geometry and dynamics of admissible metrics in measure spaces”, Cent. Eur. J. Math., 11:3 (2013), 379–400 | MR | Zbl
[93] A. M. Vershik, P. B. Zatitskiy, F. V. Petrov, “Virtual continuity of measurable functions and its applications”, Russian Math. Surveys, 69:6 (2014), 1031–1063 | DOI | DOI | MR | Zbl
[94] V. G. Vinokurov, N. N. Ganikhodzhaev, “Conditional functions in the trajectory theory of dynamical systems”, Math. USSR-Izv., 13:2 (1979), 221–252 | DOI | MR | Zbl
[95] V. G. Vinokurov, B. A. Rubshtein, “Rasshireniya ubyvayuschikh posledovatelnostei izmerimykh razbienii prostranstva Lebega”, Sluchainye protsessy i smezhnye voprosy, Vyp. 2, Fan, Tashkent, 1972, 49–61 | MR | Zbl
[96] J. von Neumann, “Zur Operatorenmethode in der klassischen Mechanik”, Ann. of Math. (2), 33:3 (1932), 587–642 | DOI | MR | Zbl
[97] N. Viner, Nelineinye zadachi v teorii sluchainykh protsessov, IL, M., 1961, 159 pp. ; РљРЅРёРіР° РїРѕ РўСЂРμбованию, Рњ., 2012, 158 СЃ.; N. Wiener, Nonlinear problems in random theory, Technology Press Research Monographs, Technology Press of M.I.T., John Wiley Sons, Inc., New York; Chapman Hall, Ltd., London, 1958, ix+131 СЃ. | MR | MR | Zbl
[98] G. Winkler, Choquet order and simplices with applications in probabilistic models, Lecture Notes in Math., 1145, Springer-Verlag, Berlin, 1985, vi+143 pp. | DOI | MR | Zbl
[99] S. A. Yuzvinskii, “Distinction of $K$ automorphisms by the scale”, Funct. Anal. Appl., 7:4 (1973), 312–316 | DOI | MR | Zbl
[100] P. B. Zatitskii, “On a scaling entropy sequence of a dynamical system”, Funct. Anal. Appl., 48:4 (2014), 291–294 | DOI | DOI | MR | Zbl
[101] P. B. Zatitskiy, “Scaling entropy sequence: invariance and examples”, J. Math. Sci. (N. Y.), 209:6 (2015), 890–909 | DOI | MR | Zbl