The theory of filtrations of subalgebras, standardness, and independence
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 72 (2017) no. 2, pp. 257-333

Voir la notice de l'article provenant de la source Math-Net.Ru

This survey is devoted to the combinatorial and metric theory of filtrations: decreasing sequences of $\sigma$-algebras in measure spaces or decreasing sequences of subalgebras of certain algebras. One of the key notions, that of standardness, plays the role of a generalization of the notion of the independence of a sequence of random variables. Questions are discussed on the possibility of classifying filtrations, on their invariants, and on various connections with problems in algebra, dynamics, and combinatorics. Bibliography: 101 titles.
Keywords: $\sigma$-algebras, independence, standardness, graded graphs, central measures.
Mots-clés : filtrations
@article{RM_2017_72_2_a1,
     author = {A. M. Vershik},
     title = {The theory of filtrations of subalgebras, standardness, and independence},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {257--333},
     publisher = {mathdoc},
     volume = {72},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2017_72_2_a1/}
}
TY  - JOUR
AU  - A. M. Vershik
TI  - The theory of filtrations of subalgebras, standardness, and independence
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2017
SP  - 257
EP  - 333
VL  - 72
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_2017_72_2_a1/
LA  - en
ID  - RM_2017_72_2_a1
ER  - 
%0 Journal Article
%A A. M. Vershik
%T The theory of filtrations of subalgebras, standardness, and independence
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2017
%P 257-333
%V 72
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_2017_72_2_a1/
%G en
%F RM_2017_72_2_a1
A. M. Vershik. The theory of filtrations of subalgebras, standardness, and independence. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 72 (2017) no. 2, pp. 257-333. http://geodesic.mathdoc.fr/item/RM_2017_72_2_a1/