Mots-clés : centre
@article{RM_2017_72_1_a2,
author = {L. S. Efremova},
title = {Dynamics of skew products of interval maps},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {101--178},
year = {2017},
volume = {72},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2017_72_1_a2/}
}
L. S. Efremova. Dynamics of skew products of interval maps. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 72 (2017) no. 1, pp. 101-178. http://geodesic.mathdoc.fr/item/RM_2017_72_1_a2/
[1] A. Puankare, O krivykh, opredelyaemykh differentsialnymi uravneniyami, OGIZ, M.–L., 1947, 392 pp.; H. Poincaré, “Sur les courbes définies par une équation différentielle”, Résal J. (3), VII (1881), 375–422 ; VIII (1882), 251–296 ; C. R., XCVIII (1884), 287–289 ; Jordan J. (4), I (1885), 167–244 ; II (1886), 151–211 | Zbl | Zbl | Zbl | Zbl | Zbl
[2] L. G. Shnirelman, “Primer odnogo preobrazovaniya ploskosti”, Izv. Donskogo politekh. in-ta, 14 (1930), 64–74
[3] A. S. Besicovitch, “A problem on topological transformations of the plane”, Fund. Math., 28 (1937), 61–65 | Zbl
[4] A. S. Besicovitch, “A problem on topological transformations of the plane. II”, Proc. Cambridge Philos. Soc., 47:1 (1951), 38–45 | DOI | MR | Zbl
[5] G. A. Hedlund, “A class of transformations of the plane”, Proc. Cambridge Philos. Soc., 51:4 (1955), 554–564 | DOI | MR | Zbl
[6] W. H. Gottschalk, G. A. Hedlund, Topological dynamics, Amer. Math. Soc. Colloq. Publ., 36, Amer. Math. Soc., Providence, RI, 1955, vii+151 pp. ; M. M. Krilov, M. M. Bogolyubov, “Zagalna teoriya miri ta ii zastosuvaniya do vivcheniya dinamichnikh sistem neliniinii mekhanitsi”, Zbirnik prats z neliniinii mekhaniki, Zapiski kafedri matematichnoi fiziki Institutu budivelnoi mekhaniki AN URSR, 3, Kiïv, Izd-vo AN USSR, 1937, 55–112 | MR | Zbl
[7] N. Kryloff, N. Bogoliouboff, “La théorie générale de la mesure dans son application à l'étude des systèmes dynamiques de la mécanique non linéaire”, Ann. Math. (2), 38 (1937), 65–113 | MR | Zbl | Zbl
[8] S. Kakutani, “Random ergodic theorems and Markoff processes with a stable distribution”, Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, Univ. of California Press, Berkeley–Los Angeles, 1951, 247–261 | MR | Zbl
[9] H. Anzai, “Ergodic skew product transformations on the torus”, Osaka Math. J., 3:1 (1951), 83–99 | MR | Zbl
[10] V. I. Oseledets, “Markov chains, skew products and ergodic theorems for ‘general’ dynamic systems”, Theory Probab. Appl., 10:3 (1965), 499–504 | DOI | MR | Zbl
[11] A. B. Katok, A. M. Stepin, “Approximations in ergodic theory”, Russian Math. Surveys, 22:5 (1967), 77–102 | DOI | MR | Zbl
[12] D. V. Anosov, “On an additive functional homology equation connected with an ergodic rotation of the circle”, Math. USSR-Izv., 7:6 (1973), 1257–1271 | DOI | MR | Zbl
[13] E. A. Sidorov, “Topological transitivity of cylindrical cascades”, Math. Notes, 14:3 (1973), 810–816 | DOI | MR | Zbl
[14] A. B. Krygin, “On $\omega$-limit sets of a cylindrical cascade”, Math. USSR-Izv., 9:4 (1975), 831–849 | DOI | MR | Zbl
[15] A. B. Krygin, “$\omega$-limit sets of smooth cylindrical cascades”, Math. Notes, 23:6 (1978), 479–485 | DOI | MR | Zbl
[16] P. S. Aleksandrov (ed.), Die Hilbertschen Probleme, Ostwalds Klassiker exakt. Wiss., 252, Akademische Verlagsgesellschaft Geest Portig K.-G., Leipzig, 1971, 302 pp. | MR | MR | Zbl | Zbl
[17] V. Niţică, “A note about topologically transitive cylindrical cascades”, Israel J. Math., 126:1 (2001), 141–156 | DOI | MR | Zbl
[18] A. Kochergin, “A Besikovitch cylindrical transformation with Hölder function”, Electron. Res. Announc. Math. Sci., 22 (2015), 87–91 | MR | Zbl
[19] A. V. Kochergin, “Besicovitch cylindrical transformation with a Hölder function”, Math. Notes, 99:3 (2016), 382–389 | DOI | DOI | MR | Zbl
[20] A. N. Sharkovsky, Yu. L. Maistrenko, E. Yu. Romanenko, Difference equations and their applications, Math. Appl., 250, Kluwer Acad. Publ., Dordrecht, 1993, xii+358 pp. | DOI | MR | MR | Zbl | Zbl
[21] A. N. Sharkovskii, Attraktory traektorii i ikh basseiny, Naukova dumka, Kiev, 2013, 319 pp.
[22] W. de Melo, S. van Strien, One-dimensional dynamics, Ergeb. Math. Grenzgeb. (3), 25, Springer-Verlag, Berlin, 1993, xiv+605 pp. | DOI | MR | Zbl
[23] L. S. Efremova, E. N. Makhrova, “On the center of continuous maps of dendrites”, J. Difference Equ. Appl., 9:3-4 (2003), 381–392 | DOI | MR | Zbl
[24] T. Sun, Q. He, J. Liu, C. Tao, H. Xi, “Non-wandering sets for dendrite maps”, Qual. Theory Dyn. Syst., 14:1 (2015), 101–108 | DOI | MR | Zbl
[25] J. Smital, “Why it is important to understand dynamics of triangular maps?”, J. Difference Equ. Appl., 14:6 (2008), 597–606 | DOI | MR | Zbl
[26] P. E. Kloeden, “On Sharkovsky's cycle coexistence ordering”, Bull. Austral. Math. Soc., 20:2 (1979), 171–177 | DOI | MR | Zbl
[27] A. N. Sharkovskii, “Sosuschestvovanie tsiklov nepreryvnogo preobrazovaniya pryamoi v sebya”, Ukr. matem. zhurn., 16:1 (1964), 61–71 | MR | Zbl
[28] F. Balibrea, P. Oprocha, “Weak mixing and chaos in nonautonomous discrete systems”, Appl. Math. Lett., 25:8 (2012), 1135–1141 | DOI | MR | Zbl
[29] L. Liu, B. Chen, “On $\omega$-limit sets and attraction of non-autonomous discrete dynamical systems”, J. Korean Math. Soc., 49:4 (2012), 703–713 | DOI | MR | Zbl
[30] Yu. Ilyashenko, W. Li, Nonlocal bifurcations, Math. Surveys Monogr., 66, Amer. Math. Soc., Providence, RI, 1999, xiv+286 pp. | MR | MR | Zbl
[31] A. S. Gorodetski, Yu. S. Ilyashenko, “Certain properties of skew products over a horseshoe and a solenoid”, Proc. Steklov Inst. Math., 231 (2000), 90–112 | MR | Zbl
[32] A. P. Veselov, “Integrable maps”, Russian Math. Surveys, 46:5 (1991), 1–51 | DOI | MR | Zbl
[33] R. I. Grigorchuk, A. Žuk, “The lamplighter group as a group generated by a 2-state automaton, and its spectrum”, Geom. Dedicata, 87:1-3 (2001), 209–244 | DOI | MR | Zbl
[34] S. S. Bel'mesova, L. S. Efremova, “On the concept of integrability for discrete dynamical systems. Investigation of wandering points of some trace map”, Nonlinear maps and their applications, Springer Proc. Math. Statist., 112, Springer, Cham, 2015, 127–158 | DOI | MR | Zbl
[35] K. Bjerklöv, “Positive Lyapunov exponent and minimality for a class of one-dimensional quasi-periodic Schrödinger equation”, Ergodic Theory Dynam. Systems, 25:4 (2005), 1015–1045 | DOI | MR | Zbl
[36] J. Gukenheimer, G. Oster, A. Ipaktchi, “The dynamics of density dependent population models”, J. Math. Biol., 4:2 (1977), 101–147 | DOI | MR | Zbl
[37] M. E. Davies, K. M. Campbell, “Linear recursive filters and nonlinear dynamics”, Nonlinearity, 9:2 (1996), 487–499 | DOI | MR | Zbl
[38] C. Beck, “Chaotic cascade model for turbulent velocity distributions”, Phys. Rev. E (3), 49:5, part A (1994), 3641–3652 | DOI | MR
[39] Z. Nitecki, Differentiable dynamics. An introduction to the orbit structure of diffeomorphisms, The M.I.T. Press, Cambridge, MA–London, 1971, xv+282 pp. | MR | MR | Zbl | Zbl
[40] G. D. Birkhoff, Dynamical systems, Amer. Math. Soc. Colloq. Publ., 9, Amer. Math. Soc., New York, 1927, viii+295 pp. | MR | Zbl
[41] V. V. Nemytskii, V. V. Stepanov, Qualitative theory of differential equations, Princeton Math. Ser., 22, Princeton Univ. Press, Princeton, NJ, 1960, viii+523 pp. | MR | MR | Zbl | Zbl
[42] A. Katok, B. Hasselblatt, Introduction to the modern theory of dynamical systems, Encyclopedia Math. Appl., 54, Cambridge Univ. Press, Cambridge, 1995, xviii+802 pp. | DOI | MR | Zbl
[43] P. S. Alexandroff, Einführung in die Mengenlehre und in die allgemeine Topologie, Hochschulbücher für Math., 85, VEB Deutscher Verlag Wissensch., Berlin, 1984, 336 pp. | MR | MR
[44] L. S. Efremova, “On the concept of the $\Omega$-function of the skew product of interval mappings”, J. Math. Sci. (N. Y.), 105:1 (2001), 1779–1798 | DOI | MR | Zbl
[45] L. S. Efremova, “A decomposition theorem for the space of $C^1$-smooth skew products with complicated dynamics of the quotient map”, Sb. Math., 204:11 (2013), 1598–1623 | DOI | DOI | MR | Zbl
[46] L. Efremova, “Absence of $C^1$-$\Omega$-explosion in the space of smooth simplest skew products”, J. Math. Sci. (N. Y.), 202:6 (2014), 794–808 | DOI | MR | Zbl
[47] L. S. Efremova, “Remarks on the nonwandering set of skew products with a closed set of periodic points of the quotient map”, Nonlinear maps and their applications, Springer Proc. Math. Statist., 57, Springer, New York, 2014, 39–58 | DOI | MR | Zbl
[48] L. S. Efremova, “On the nonwandering set and center of some skew products of mappings of the interval”, Russian Math. (Iz. VUZ), 50:10 (2006), 17–25 | MR
[49] L. S. Efremova, “O nebluzhdayuschem mnozhestve i tsentre treugolnykh otobrazhenii s zamknutym mnozhestvom periodicheskikh tochek v baze”, Dinamicheskie sistemy i nelineinye yavleniya, In-t matem. AN USSR, Kiev, 1990, 15–25 | MR
[50] A. N. Sharkovskii, V. A. Dobrynskii, “Nebluzhdayuschie tochki dinamicheskikh sistem”, Dinamicheskie sistemy i voprosy ustoichivosti reshenii differentsialnykh uravnenii, In-t matem. AN USSR, Kiev, 1973, 165–174 | MR | Zbl
[51] J. Smítal, T. H. Steele, “Stability of dynamical structure under perturbation of the generating function”, J. Difference Equ. Appl., 15:1 (2009), 77–86 | DOI | MR | Zbl
[52] A. M. Bruckner, J. G. Ceder, “Chaos in terms of the map $x\to\omega(x,f)$”, Pacific J. Math., 156:1 (1992), 63–96 | DOI | MR | Zbl
[53] J. Stark, “Regularity of invariant graphs for forced systems”, Ergodic Theory Dynam. Systems, 19:1 (1999), 155–199 | DOI | MR | Zbl
[54] T. H. Jäger, “On the structure of strange non-chaotic attractors in pinched skew products”, Ergodic Theory Dynam. Systems, 27:2 (2007), 493–510 | DOI | MR | Zbl
[55] K. Kuratovskii, Topologiya, v. 1, Mir, M., 1966, 594 pp. ; С‚. 2, 1969, 624 СЃ. ; K. Kuratowski, Topology, С‚. 1, Academic Press, New York–London; PWN, Warsaw, 1966, xx+560 СЃ. ; v. 2, 1968, xiv+608 pp. | MR | Zbl | MR | MR | Zbl | MR
[56] E. M. Coven, Z. Nitecki, “Non-wandering sets of the powers of maps of the interval”, Ergodic Theory Dynam. Systems, 1:1 (1981), 9–31 | DOI | MR | Zbl
[57] L. S. Efremova, “Space of $C^1$-smooth skew products of maps of an interval”, Theoret. and Math. Phys., 164:3 (2010), 1208–1214 | DOI | DOI | Zbl
[58] R. Markarian, M. J. Pacifico, J. L. Vieitez, “Exponential speed of mixing for skew-products with singularities”, Nonlinearity, 26:1 (2013), 269–287 | DOI | MR | Zbl
[59] S. F. Kolyada, “On dynamics of triangular maps of the square”, Ergodic Theory Dynam. Systems, 12:4 (1992), 749–768 | DOI | MR | Zbl
[60] A. N. Sharkovskii, “O tsiklakh i strukture nepreryvnogo otobrazheniya”, Ukr. matem. zhurn., 17:3 (1965), 104–111 | MR | Zbl
[61] Z. Nitecki, “Maps of the interval with closed periodic set”, Proc. Amer. Math. Soc., 85:3 (1982), 451–456 | DOI | MR | Zbl
[62] V. V. Fedorenko, A. N. Sharkovskii, “Nepreryvnye otobrazheniya intervala s zamknutym mnozhestvom periodicheskikh tochek”, Issledovaniya differentsialnykh i differentsialno-raznostnykh uravnenii, In-t matem. AN USSR, Kiev, 1980, 137–145 | MR | Zbl
[63] O. M. Sharkovskii, “Neblukayuchi tochki ta tsentr neperervnogo vidobrazhennya pryamoi v sebe”, Dopov. AN URSR, 7 (1964), 865–868 | MR | Zbl
[64] O. M. Sharkovskii, “Pro odnu teoremu Dzh. Birkgofa”, Dopov. AN URSR Ser. A, 5 (1967), 429–432 | MR | Zbl
[65] Z. Nitecki, “Topological dynamics on the interval”, Ergodic theory and dynamical systems (College Park, MD, 1979/1980), v. II, Progr. Math., 21, Birkhäuser, Boston, MA, 1982, 1–73 | MR | Zbl
[66] L. S. Block, W. A. Coppel, Dynamics in one dimension, Lecture Notes in Math., 1513, Springer-Verlag, Berlin, 1992, viii+249 pp. | DOI | MR | Zbl
[67] I. U. Bronshtein, Neavtonomnye dinamicheskie sistemy, Shtiintsa, Kishinev, 1984, 292 pp. | MR | Zbl
[68] M. V. Jakobson, “On smooth mappings of the circle into itself”, Math. USSR-Sb., 14:2 (1971), 161–185 | DOI | MR | Zbl
[69] D. V. Anosov, “Structurally stable systems”, Proc. Steklov Inst. Math., 169 (1986), 61–95 | MR | Zbl
[70] L. S. Efremova, Periodicheskie dvizheniya diskretnykh poludinamicheskikh sistem, Diss. $\dotsc$ kand. fiz.-matem. nauk, Gorkovskii gos. un-t, Gorkii, 1981, 117 pp.
[71] E. D'Aniello, T. H. Steele, “Approximating $\omega$-limit sets with periodic orbits”, Aequationes Math., 75:1-2 (2008), 93–102 | DOI | MR | Zbl
[72] E. D'Aniello, T. H. Steel, “Asymptotically stable sets and the stability of $\omega$-limit sets”, J. Math. Anal. Appl., 321:2 (2006), 867–879 | DOI | MR | Zbl
[73] J. Kupka, “The triangular maps with closed sets of periodic points”, J. Math. Anal. Appl., 319:1 (2006), 302–314 | DOI | MR | Zbl
[74] C. Arteaga, “Smooth triangular maps of the square with closed set of periodic points”, J. Math. Anal. Appl., 196:3 (1995), 987–997 | DOI | MR | Zbl
[75] J. L. G. Guirao, F. L. Pelayo, “On skew-product maps with base having closed set of periodic points”, Int. J. Comput. Math., 85:3-4 (2008), 441–445 | DOI | MR | Zbl
[76] J. L. G. Guirao, R. G. Rubio, “Nonwandering set of points of skew-product maps with base having closed set of periodic points”, J. Math. Anal. Appl., 362:2 (2010), 350–354 | DOI | MR | Zbl
[77] L. S. Efremova, “Nonwandering sets of $C^1$-smooth skew products of interval maps with complicated dynamics of quotient map”, J. Math. Sci. (N. Y.), 219:1 (2016), 86–98 | DOI | Zbl
[78] E. V. Blinova, L. S. Efremova, “On $\Omega$-blow-ups in the simplest $C^1$-smooth skew products of interval mappings”, J. Math. Sci. (N. Y.), 157:3 (2009), 456–465 | DOI | MR | Zbl
[79] D. V. Anosov, “Dynamical systems in the 1960s: the hyperbolic revolution”, Mathematical events of the twentieth century, Springer-Verlag, Berlin, 2006, 1–17 | DOI | MR | Zbl | Zbl
[80] L. S. Efremova, “O $C^0$-$\Omega$-vzryvakh v gladkikh kosykh proizvedeniyakh otobrazhenii intervala s zamknutym mnozhestvom periodicheskikh tochek”, Vestn. Nizhegorodskogo gos. un-ta im. N. I. Lobachevskogo, 2012, no. 3(1), 130–136
[81] S. Smale, “Differentiable dynamical systems”, Bull. Amer. Math. Soc., 73:6 (1967), 747–817 | DOI | MR | Zbl
[82] J. Palis, “$\Omega$-explosions”, Proc. Amer. Math. Soc., 27:1 (1971), 85–90 | DOI | MR | Zbl
[83] M. W. Hirsch, C. C. Pugh, “Stable manifolds and hyperbolic sets”, Global analysis (Berkeley, CA, 1968), Proc. Sympos. Pure Math., 14, Amer. Math. Soc., Providence, RI, 1970, 133–163 | MR | Zbl
[84] L. S. Efremova, V. Zh. Sakbaev, “Notion of blowup of the solution set of differential equations and averaging of random semigroups”, Theoret. and Math. Phys., 185:2 (2015), 1582–1598 | DOI | DOI | MR | Zbl
[85] L. Block, J. E. Franke, “The chain recurrent set, attractors, and explosions”, Ergodic Theory Dynam. Systems, 5:3 (1985), 321–327 | DOI | MR | Zbl
[86] D. V. Anosov, S. Kh. Aranson, V. Z. Grines, R. V. Plykin, E. A. Sataev, A. V. Safonov, V. V. Solodov, A. N. Starkov, A. M. Stepin, S. V. Shlyachkov, “Dynamical systems with hyperbolic behaviour”, Dynamical systems IX, Encyclopaedia Math. Sci., 66, Springer, Berlin, 1995, 1–230 | MR | Zbl
[87] G. L. Forti, L. Paganoni, “On some properties of triangular maps”, Iteration theory (ECIT {'}96) (Urbino), Grazer Math. Ber., 339, Karl-Franzens-Univ. Graz, Graz, 1999, 125–140 | MR | Zbl
[88] J. Kupka, “Triangular maps with the chain recurrent point periodic”, Acta Math. Univ. Comenian. (N. S.), 72:2 (2003), 245–251 | MR | Zbl
[89] D. V. Anosov, “Ob odnom klasse invariantnykh mnozhestv gladkikh dinamicheskikh sistem”, Tpudy V mezhdunapodnoi konfepentsii po nelineinym kolebaniyam, v. 2, Kachestvennye metody, In-t matem. AN USSR, Kiev, 1970, 39–45 | Zbl
[90] M. Misiurewicz, “Structure of mappings of an interval with zero entropy”, Inst. Hautes Études Sci. Publ. Math., 53:1 (1981), 5–16 | DOI | MR | Zbl
[91] D. Bruno, V. J. López, “Asymptotical periodicity for analytic triangular maps of type less than $2^\infty$”, J. Math. Anal. Appl., 361:1 (2010), 1–9 | DOI | MR | Zbl
[92] J.-P. Eckmann, “Roads to turbulence in dissipative dynamical systems”, Rev. Modern Phys., 53:4 (1981), 643–654 | DOI | MR | Zbl
[93] A. Denjoy, “Sur les courbes définies par les équations différentielles à la surface du tore”, J. Math. Pures Appl. (9), 11 (1932), 333–375 | MR | Zbl
[94] A. Denjoy, “Les trajectoires à la surface du tore”, C. R. Acad. Sci. Paris, 223 (1946), 5–8 | MR | Zbl
[95] L. S. Efremova, “Differential properties and attracting sets of a simplest skew product of interval maps”, Sb. Math., 201:6 (2010), 873–907 | DOI | DOI | MR | Zbl
[96] Z. Koc̆en, “The problem of classification of triangular maps with zero topological entropy”, Ann. Math. Sil., 13 (1999), 181–192 | MR | Zbl
[97] F. Balibrea, J. L. García Guirao, J. I. Muñoz Casado, “Description of $\omega$-limit sets of a triangular map on $I^2$”, Far East J. Dyn. Syst., 3:1 (2001), 87–101 | MR | Zbl
[98] F. Balibrea, J. L. García Guirao, J. I. Muñoz Casado, “A triangular map on $I^2$ whose $\omega$-limit sets are all compact interval of $\{0\}\times I$”, Discrete Contin. Dyn. Syst., 8:4 (2002), 983–994 | DOI | MR | Zbl
[99] F. Balibrea Gallego, J. L. García Guirao, J. I. Muñoz Casado, “On $\omega$-limit sets of triangular maps on the unit cube”, J. Difference Equ. Appl., 9:3-4 (2003), 289–304 | DOI | MR | Zbl
[100] V. Jiménez López, J. Smítal, “$\omega$-Limit sets for triangular mappings”, Fund. Math., 167:1 (2001), 1–15 | DOI | MR | Zbl
[101] G.-L. Forti, L. Paganoni, J. Smítal, “Triangular maps with all periods and no infinite $\omega$-limit set containing periodic points”, Topology Appl., 153:5-6 (2005), 818–832 | DOI | MR | Zbl
[102] F. Balibrea, J. Smítal, “A triangular map with homoclinic orbit and no infinite $\omega$-limit set containing periodic points”, Topology Appl., 153:12 (2006), 2092–2095 | DOI | MR | Zbl
[103] Sh. I. Akhalaya, A. M. Stepin, “On absolutely continuous invariant measures of noncontracting transformations of a circle”, Proc. Steklov Inst. Math., 244 (2004), 18–28 | MR | Zbl
[104] L. S. Efremova, “Ob integralnom uslovii suschestvovaniya odnomernykh prityagivayuschikh mnozhestv prosteishego kosogo proizvedeniya otobrazhenii intervala”, Tr. MFTI, 2:3 (2010), 9–15
[105] Ll. Alsedà, J. Llibre, “A note on the set of periods for continuous maps of the circle which have degree one”, Proc. Amer. Math. Soc., 93:1 (1985), 133–138 | DOI | MR | Zbl
[106] L. S. Efremova, “Example of the smooth skew product in the plane with the one-dimensional ramified continuum as the global attractor”, European conference on iteration theory 2010, ESAIM Proc., 36, EDP Sci., Les Ulis, 2012, 15–25 | DOI | MR | Zbl
[107] A. G. Mayer, “Sur un problème de Birkhoff”, C. R. (Doklady) Acad. Sci. URSS (N. S.), 55:6 (1947), 473–475 | MR | Zbl
[108] A. G. Maier, “O poryadkovom chisle tsentralnykh traektorii”, Dokl. AN SSSR, 59:8 (1948), 1393–1396 | MR | Zbl
[109] A. G. Maier, “O tsentralnykh traektoriyakh i probleme Birkgofa”, Matem. sb., 26(68):2 (1950), 265–290 | MR | Zbl
[110] L. P. Shil'nikov, “On the work of A. G. Maier on central motions”, Math. Notes, 5:3 (1969), 204–206 | DOI | MR | Zbl
[111] L. Block, “Homoclinic points of mappings of the interval”, Proc. Amer. Math. Soc., 72:3 (1978), 576–580 | DOI | MR | Zbl
[112] S. V. Gonchenko, D. V. Turaev, L. P. Shilnikov, “Homoclinic tangencies of arbitrary order in Newhouse domains”, J. Math. Sci. (N. Y.), 105:1 (2001), 1738–1778 | DOI | MR | Zbl
[113] L. S. Efremova, “Multivalued functions and nonwandering set of skew products of maps of an interval with complicated dynamics of quotient map”, Russian Math. (Iz. VUZ), 60:2 (2016), 77–81 | DOI | Zbl
[114] L. S. Efremova, “Birkhoff problem on the depth of the center for skew products of maps of an interval”, Dynamics, bifurcations and chaos 2016 (DBC III), Book of abstracts (Nizhny Novgorod, 2016), Lobachevsky State Univ., Nizhny Novgorod, 2016, 51
[115] L. S. Efremova, “Set-valued functions and dynamics of skew products of interval maps”, Progress in nonlinear science (Nizhny Novgorod, 2001), v. 1, RAS, Inst. Appl. Phys., Nizhny Novgorod, 2002, 219–224 | MR
[116] L. S. Efremova, “Concept of stability as a whole of a family of fibers maps for $C^1$-smooth skew products and its generalization”, Dynamics, bifurcations and chaos 2015 (DBC II), Book of abstracts (Nizhni Novgorod, 2015), Lobachevsky State Univ., Nizhni Novgorod, 2015, 7
[117] L. S. Efremova, “Stability as a whole of a family of fibers maps and $\Omega$-stability of $C^1$-smooth skew products of maps of an interval”, J. Phys.: Conf. Ser., 692 (2016), 012010, 10 pp. | DOI
[118] R. Abraham, S. Smale, “Nongenericity of $\Omega$-stability”, Global analysis (Berkeley, CA, 1968), Proc. Sympos. Pure Math., 14, Amer. Math. Soc., Providence, RI, 1970, 5–8 | DOI | MR | Zbl
[119] R. Mañé, “A proof of the $C^1$ stability conjecture”, Inst. Hautes Études Sci. Publ. Math., 1988, no. 66, 161–210 | DOI | MR | Zbl
[120] J. Palis, “On the $C^1$ $\Omega$-stability conjecture”, Inst. Hautes Études Sci. Publ. Math., 1988, no. 66, 211–215 | DOI | MR | Zbl
[121] S. E. Newhouse, “Nondensity of axiom A(a) on $S^2$”, Global analysis (Berkeley, CA, 1968), Proc. Sympos. Pure Math., 14, Amer. Math. Soc., Providence, RI, 1970, 191–202 | DOI | MR | Zbl
[122] F. Przytycki, “On $\Omega$-stability and structural stability of endomorphisms satisfying Axiom A”, Studia Math., 60:1 (1977), 61–77 | MR | Zbl
[123] L. S. Efremova, “$\Omega$-stable skew products of interval maps are not dense in $T^1(I)$”, Proc. Steklov Inst. Math., 236 (2002), 157–163 | MR | Zbl
[124] L. S. Efremova, “New set-valued functions in the theory of skew products of interval maps”, Nonlinear Anal., 47:8 (2001), 5297–5308 | DOI | MR | Zbl
[125] J. Buzzi, T. Fisher, M. Sambarino, C. Vásquez, “Maximal entropy measures for certain partially hyperbolic, derived from Anosov systems”, Ergodic Theory Dynam. Systems, 32:1 (2012), 63–79 | DOI | MR | Zbl