Mots-clés : monodromy matrix, Gauss decomposition
@article{RM_2017_72_1_a1,
author = {A. A. Hutsalyuk and A. Liashyk and S. Z. Pakulyak and E. Ragoucy and N. A. Slavnov},
title = {Current presentation for the {super-Yangian} double $DY(\mathfrak{gl}(m|n))$ and {Bethe} vectors},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {33--99},
year = {2017},
volume = {72},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2017_72_1_a1/}
}
TY - JOUR
AU - A. A. Hutsalyuk
AU - A. Liashyk
AU - S. Z. Pakulyak
AU - E. Ragoucy
AU - N. A. Slavnov
TI - Current presentation for the super-Yangian double $DY(\mathfrak{gl}(m|n))$ and Bethe vectors
JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY - 2017
SP - 33
EP - 99
VL - 72
IS - 1
UR - http://geodesic.mathdoc.fr/item/RM_2017_72_1_a1/
LA - en
ID - RM_2017_72_1_a1
ER -
%0 Journal Article
%A A. A. Hutsalyuk
%A A. Liashyk
%A S. Z. Pakulyak
%A E. Ragoucy
%A N. A. Slavnov
%T Current presentation for the super-Yangian double $DY(\mathfrak{gl}(m|n))$ and Bethe vectors
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2017
%P 33-99
%V 72
%N 1
%U http://geodesic.mathdoc.fr/item/RM_2017_72_1_a1/
%G en
%F RM_2017_72_1_a1
A. A. Hutsalyuk; A. Liashyk; S. Z. Pakulyak; E. Ragoucy; N. A. Slavnov. Current presentation for the super-Yangian double $DY(\mathfrak{gl}(m|n))$ and Bethe vectors. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 72 (2017) no. 1, pp. 33-99. http://geodesic.mathdoc.fr/item/RM_2017_72_1_a1/
[1] L. A. Takhtadzhyan, L. D. Faddeev, “Kvantovyi metod obratnoi zadachi i $XYZ$ model Geizenberga”, UMN, 34:5(209) (1979), 13–63 | MR
[2] E. K. Sklyanin, L. A. Takhtadzhyan, L. D. Faddeev, “Kvantovyi metod obratnoi zadachi. I”, TMF, 40:2 (1980), 194–220 ; E. K. Sklyanin, L. A. Takhtadzhyan, L. D. Faddeev, “Quantum inverse problem method. I”, Theoret. and Math. Phys., 40:2 (1979), 688–706 | MR | Zbl | DOI
[3] N. A. Slavnov, “Vychislenie skalyarnykh proizvedenii volnovykh funktsii i formfaktorov v ramkakh algebraicheskogo anzatsa Bete”, TMF, 79:2 (1989), 232–240 | MR
[4] V. E. Korepin, N. M. Bogoliubov, A. G. Izergin, Quantum inverse scattering method and correlation functions, Cambridge Monogr. Math. Phys., Cambridge Univ. Press, Cambridge, 1993, xx+555 pp. | DOI | MR | Zbl
[5] N. A. Slavnov, “Algebraicheskii anzats Bete i kvantovye integriruemye sistemy”, UMN, 62:4(376) (2007), 91–132 | DOI | MR | Zbl
[6] P. P. Kulish, N. Yu. Reshetikhin, “Diagonalisation of $\operatorname{GL}(N)$ invariant transfer matrices and quantum $N$-wave system (Lee model)”, J. Phys. A, 16 (1983), L591–L596 | DOI | MR | Zbl
[7] P. P. Kulish, N. Yu. Reshetikhin, “Obobschennyi ferromagnetik Geizenberga i model Grossa–Neve”, ZhETF, 80:1 (1981), 214–228 | MR
[8] P. P. Kulish, N. Yu. Reshetikhin, “O $GL_3$-invariantnykh resheniyakh uravneniya Yanga–Bakstera i assotsiirovannykh kvantovykh sistemakh”, Voprosy kvantovoi teorii polya i statisticheskoi fiziki. 3, Zap. nauch. sem. LOMI, 120, Izd-vo “Nauka”, Leningrad. otd., L., 1982, 92–121 ; P. P. Kulish, N. Yu. Reshetikhin, “$GL_3$ invariant solutions of the Yang–Baxter equation and associated quantum systems”, J. Soviet Math., 34:5 (1986), 1948–1971 | MR
[9] N. Yu. Reshetikhin, “Vychislenie normy betevskikh vektorov v modelyakh s $SU(3)$ simmetriei”, Voprosy kvantovoi teorii polya i statisticheskoi fiziki. 6, Zap. nauch. sem. LOMI, 150, Izd-vo “Nauka”, Leningrad. otd., L., 1986, 196–213 ; N. Yu. Reshetikhin, “Calculation of the norm of Bethe vectors in models with $SU(3)$-symmetry”, J. Soviet Math., 46:1 (1989), 1694–1706 | MR | DOI
[10] A. N. Varchenko, V. O. Tarasov, “Dzheksonovskie integralnye predstavleniya dlya reshenii kvantovogo uravneniya Knizhnika–Zamolodchikova”, Algebra i analiz, 6:2 (1994), 90–137 ; A. Varchenko, V. Tarasov, “Jackson integral representations for solutions to the quantized Knizhnik–Zamolodchikov equation”, St. Petersburg Math. J., 6:2 (1995), 275–313; (1994 (v1 – 1993)), 50 pp., arXiv: hep-th/9311040 | MR | Zbl
[11] V. Tarasov, A. Varchenko, “Combinatorial formulae for nested Bethe vectors”, SIGMA, 9 (2013), 048, 28 pp. ; (2013 (v1 – 2007)), 28 pp., arXiv: math/0702277 | DOI | MR | Zbl
[12] S. Belliard, E. Ragoucy, “The nested Bethe ansatz for ‘all’ closed spin chains”, J. Phys. A, 41:29 (2008), 295202, 33 pp. | DOI | MR | Zbl
[13] S. Khoroshkin, S. Pakuliak, “A computation of an universal weight function for quantum affine algebra $U_q(\widehat{\mathfrak{gl}}_N)$”, J. Math. Kyoto Univ., 48:2 (2008), 277–321 ; (2007), 40 pp., arXiv: 0711.2819 | MR | Zbl
[14] A. F. Oskin, S. Z. Pakulyak, A. V. Silantev, “Ob universalnoi vesovoi funktsii dlya kvantovoi affinnoi algebry $U_q(\widehat{\mathfrak{gl}}_N)$”, Algebra i analiz, 21:4 (2009), 196–240 ; A. Os'kin, S. Pakuliak, A. Silant'ev, “On the universal weight function for the quantum affine algebra $U_q(\widehat{\mathfrak{gl}}_N)$”, St. Petersburg Math. J., 21:4 (2010), 651–680 ; (2007), 35 pp., arXiv: 0711.2821 | MR | Zbl | DOI
[15] S. Belliard, S. Pakuliak, E. Ragoucy, N. A. Slavnov, “Bethe vectors of $GL(3)$-invariant integrable models”, J. Stat. Mech. Theory Exp., 2013, no. 2, P02020, 24 pp. ; 2013 (v1 – 2012), 22 pp., arXiv: 1210.0768 | MR
[16] S. Belliard, S. Pakuliak, E. Ragoucy, N. A. Slavnov, “Form factors in $SU(3)$-invariant integrable models”, J. Stat. Mech. Theory Exp., 2013, no. 4, P04033, 16 pp. ; 2013 (v1 – 2012), 15 pp., arXiv: 1211.3968 | MR
[17] S. Belliard, S. Pakuliak, E. Ragoucy, N. A. Slavnov, “Bethe vectors of quantum integrable models with $\operatorname{GL}(3)$ trigonometric $R$-matrix”, SIGMA, 9 (2013), 058, 23 pp. | DOI | MR | Zbl
[18] A. Hutsalyuk, A. Liashyk, S. Z. Pakuliak, E. Ragoucy, N. A. Slavnov, “Form factors of the monodromy matrix entries in $\mathfrak{gl}(2|1)$-invariant integrable models”, Nuclear Phys. B, 911 (2016), 902–927 | DOI | MR | Zbl
[19] A. Hutsalyuk, A. Liashyk, S. Z. Pakuliak, E. Ragoucy, N. A. Slavnov, “Scalar products of Bethe vectors in models with $\mathfrak{gl}(2|1)$ symmetry 2. Determinant representation”, J. Phys. A, 50:3 (2017), 034004 ; (2016), 22 pp., arXiv: 1606.03573 | DOI
[20] A. Hutsalyuk, A. Liashyk, S. Z. Pakuliak, E. Ragoucy, N. A. Slavnov, “Multiple actions of the monodromy matrix in $\mathfrak{gl}(2|1)$-invariant integrable models”, SIGMA, 12 (2016), 099, 22 pp. | DOI | MR
[21] A. Hutsalyuk, A. Liashyk, S. Z. Pakuliak, E. Ragoucy, N. A. Slavnov, “Scalar products of Bethe vectors in models with $\mathfrak{gl}(2|1)$ symmetry 1. Super-analog of Reshetikhin formula”, J. Phys. A, 49:45 (2016), 454005, 27 pp. | DOI | Zbl
[22] V. Chari, A. Pressley, A guide to quantum groups, Cambridge Univ. Press, Cambridge, 1994, xvi+651 pp. | MR | Zbl
[23] V. G. Drinfeld, “Novaya realizatsiya yangianov i kvantovykh affinnykh algebr”, Dokl. AN SSSR, 296:1 (1987), 13–17 ; V. G. Drinfel'd, “A new realization of Yangians and quantized affine algebras”, Soviet Math. Dokl., 36:2 (1988), 212–216 | MR | Zbl
[24] J. Ding, I. B. Frenkel, “Isomorphism of two realizations of quantum affine algebra $U_q(\widehat{\mathfrak{gl}}(N))$”, Comm. Math. Phys., 156:2 (1993), 277–300 | DOI | MR | Zbl
[25] Y.-Z. Zhang, “Super-Yangian double and its central extension”, Phys. Lett. A, 234:1 (1997), 20–26 | DOI | MR | Zbl
[26] B. Enriquez, S. Khoroshkin, S. Pakuliak, “Weight functions and Drinfeld currents”, Comm. Math. Phys., 276:3 (2007), 691–725 ; (2006), 36 pp., arXiv: math/0610398 | DOI | MR | Zbl
[27] L. Frappat, S. Khoroshkin, S. Pakuliak, E. Ragoucy, “Bethe ansatz for the universal weight function”, Ann. Henri Poincaré, 10:3 (2009), 513–548 ; (2009 (v1 – 2008)), 31 pp., arXiv: 0810.3135 | DOI | MR | Zbl
[28] S. Khoroshkin, S. Pakuliak, “Generating series for nested Bethe vectors”, SIGMA, 4 (2008), 081, 23 pp. | DOI | MR | Zbl
[29] A. G. Izergin, “Statisticheskaya summa shestivershinnoi modeli v konechnom ob'eme”, Dokl. AN SSSR, 297:2 (1987), 331–333 | MR | Zbl
[30] S. Pakuliak, E. Ragoucy, N. A. Slavnov, Bethe vectors for models based on the super-Yangian $Y(\mathfrak{gl}(m|n))$, 2016, 30 pp., arXiv: 1604.02311