Mots-clés : finite group actions
@article{RM_2017_72_1_a0,
author = {S. M. Gusein-Zade},
title = {Equivariant analogues of the {Euler} characteristic and {Macdonald} type equations},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {1--32},
year = {2017},
volume = {72},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2017_72_1_a0/}
}
TY - JOUR AU - S. M. Gusein-Zade TI - Equivariant analogues of the Euler characteristic and Macdonald type equations JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2017 SP - 1 EP - 32 VL - 72 IS - 1 UR - http://geodesic.mathdoc.fr/item/RM_2017_72_1_a0/ LA - en ID - RM_2017_72_1_a0 ER -
S. M. Gusein-Zade. Equivariant analogues of the Euler characteristic and Macdonald type equations. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 72 (2017) no. 1, pp. 1-32. http://geodesic.mathdoc.fr/item/RM_2017_72_1_a0/
[1] N. A'Campo, “La fonction zêta d'une monodromie”, Comment. Math. Helv., 50 (1975), 233–248 | DOI | MR | Zbl
[2] M. Atiyah, G. Segal, “On equivariant Euler characteristics”, J. Geom. Phys., 6:4 (1989), 671–677 | DOI | MR | Zbl
[3] V. V. Batyrev, D. I. Dais, “Strong McKay correspondence, string-theoretic Hodge numbers and mirror symmetry”, Topology, 35:4 (1996), 901–929 | DOI | MR | Zbl
[4] K. Behrend, J. Bryan, B. Szendrői, “Motivic degree zero Donaldson–Thomas invariants”, Invent. Math., 192:1 (2013), 111–160 | DOI | MR | Zbl
[5] P. Berglund, M. Henningson, “Landau–Ginzburg orbifolds, mirror symmetry and the elliptic genus”, Nuclear Phys. B, 433:2 (1995), 311–332 | DOI | MR | Zbl
[6] P. Berglund, T. Hübsch, “A generalized construction of mirror manifolds”, Nuclear Phys. B, 393:1-2 (1993), 377–391 | DOI | MR | Zbl
[7] F. Bittner, “The universal Euler characteristic for varieties of characteristic zero”, Compos. Math., 140:4 (2004), 1011–1032 | DOI | MR | Zbl
[8] L. A. Borisov, Class of the affine line is a zero divisor in the Grothendieck ring, 2015 (v1 – 2014), 6 pp., arXiv: 1412.6194
[9] D. Bourqui, “Produit eulérien motivique et courbes rationnelles sur les variétés toriques”, Compos. Math., 145:6 (2009), 1360–1400 | DOI | MR | Zbl
[10] J. Bryan, A. Morrison, “Motivic classes of commuting varieties via power structures”, J. Algebraic Geom., 24:1 (2015), 183–199 | DOI | MR | Zbl
[11] S. Cappell, L. Maxim, T. Ohmoto, J. Schürmann, S. Yokura, “Characteristic classes of Hilbert schemes of points via symmetric products”, Geom. Topol., 17:2 (2013), 1165–1198 | DOI | MR | Zbl
[12] J. Cheah, The cohomology of smooth nested Hilbert schemes of points, Ph. D. Thesis, Univ. of Chicago, 1994, 237 pp. | MR
[13] C. H. Clemens, “Picard–Lefschetz theorem for families of nonsingular algebraic varieties acquiring ordinary singularities”, Trans. Amer. Math. Soc., 136 (1969), 93–108 | DOI | MR | Zbl
[14] A. Craw, “An introduction to motivic integration”, Strings and geometry, Clay Math. Proc., 3, Amer. Math. Soc., Providence, RI, 2004, 203–225 | MR | Zbl
[15] V. I. Danilov, A. G. Khovanskii, “Newton polyhedra and an algorithm for computing Hodge–Deligne numbers”, Math. USSR-Izv., 29:2 (1987), 279–298 | DOI | MR | Zbl
[16] P. Deligne, “Théorie de Hodge. II”, Inst. Hautes Études Sci. Publ. Math., 1971, no. 40, 5–57 | DOI | MR | Zbl
[17] P. Deligne, “Théorie de Hodge. III”, Inst. Hautes Études Sci. Publ. Math., 1974, no. 44, 5–77 | DOI | MR | Zbl
[18] J. Denef, F. Loeser, “Geometry on arc spaces of algebraic varieties”, European congress of mathematics (Barcelona, 2000), v. I, Progr. Math., 201, Birkhäuser, Basel, 2001, 327–348 | MR | Zbl
[19] A. Dimca, G. I. Lehrer, “Purity and equivariant weight polynomials”, Algebraic groups and Lie groups, Austral. Math. Soc. Lect. Ser., 9, Cambridge Univ. Press, Cambridge, 1997, 161–181 | MR | Zbl
[20] L. Dixon, J. A. Harvey, C. Vafa, E. Witten, “Strings on orbifolds”, Nuclear Phys. B, 261:4 (1985), 678–686 | DOI | MR
[21] L. Dixon, J. A. Harvey, C. Vafa, E. Witten, “Strings on orbifolds. II”, Nuclear Phys. B, 274:2 (1986), 285–314 | DOI | MR
[22] W. Ebeling, S. M. Gusein-Zade, “Radial index and Euler obstruction of a 1-form on a singular variety”, Geom. Dedicata, 113 (2005), 231–241 | DOI | MR | Zbl
[23] W. Ebeling, S. M. Gusein-Zade, “Indices of vector fields and 1-forms on singular varieties”, Global aspects of complex geometry, Springer, Berlin, 2006, 129–169 | DOI | MR | Zbl
[24] W. Ebeling, S. M. Gusein-Zade, “Equivariant indices of vector fields and 1-forms”, Eur. J. Math., 1:2 (2015), 286–301 | DOI | MR | Zbl
[25] W. Ebeling, S. M. Gusein-Zade, “Higher order spectra, equivariant Hodge–Deligne polynomials and Macdonald type equations”, Singularities and computer algebra, Festschrift for Gert-Martin Greuel on the occasion of his 70th birthday, Springer (to appear); 2015, 11 pp., arXiv: 1507.08088
[26] W. Ebeling, S. M. Gusein-Zade, “Orbifold zeta functions for dual invertible polynomials”, Proc. Edinb. Math. Soc. (2), 60:1 (2017), 99–106 | DOI
[27] W. Ebeling, A. Takahashi, “Mirror symmetry between orbifold curves and cusp singularities with group action”, Int. Math. Res. Not. IMRN, 2013:10, 2240–2270 | DOI | MR | Zbl
[28] H. Fan, T. Jarvis, Y. Ruan, “The Witten equation, mirror symmetry, and quantum singularity theory”, Ann. of Math. (2), 178:1 (2013), 1–106 | DOI | MR | Zbl
[29] E. Gorsky, “Adams operations and power structures”, Mosc. Math. J., 9:2 (2009), 305–323 | MR | Zbl
[30] S. M. Gusein-Zade, “Integration with respect to the Euler characteristic and its applications”, Russian Math. Surveys, 65:3 (2010), 399–432 | DOI | DOI | MR | Zbl
[31] S. M. Gusein-Zade, I. Luengo, A. Melle-Hernández, “A power structure over the Grothendieck ring of varieties”, Math. Res. Lett., 11:1 (2004), 49–57 | DOI | MR | Zbl
[32] S. M. Gusein-Zade, I. Luengo, A. Melle-Hernández, “Power structure over the Grothendieck ring of varieties and generating series of Hilbert schemes of points”, Michigan Math. J., 54:2 (2006), 353–359 | DOI | MR | Zbl
[33] S. M. Gusein-Zade, I. Luengo, A. Melle-Hernández, “On the power structure over the Grothendieck ring of varieties and its applications”, Proc. Steklov Inst. Math., 258:1 (2007), 53–64 | DOI | MR | Zbl
[34] S. M. Gusein-Zade, I. Luengo, A. Melle-Hernández, “On generating series of classes of equivariant Hilbert schemes of fat points”, Mosc. Math. J., 10:3 (2010), 593–602 | MR | Zbl
[35] S. M. Gusein-Zade, I. Luengo, A. Melle-Hernández, “On piecewise isomorphism of some varieties”, Azerb. J. Math., 1:2 (2011), 91–96 | MR | Zbl
[36] S. M. Gusein-Zade, I. Luengo, A. Melle-Hernández, “Higher order generalized Euler characteristics and generating series”, J. Geom. Phys., 95 (2015), 137–143 | DOI | MR | Zbl
[37] S. M. Gusein-Zade, I. Luengo, A. Melle-Hernández, “Higher order orbifold Euler characteristics for compact Lie group actions”, Proc. Roy. Soc. Edinburgh Sect. A, 145:6 (2015), 1215–1222 | DOI | MR | Zbl
[38] S. M. Gusein-Zade, I. Luengo, A. Melle-Hernández, “Equivariant versions of higher order orbifold Euler characteristics”, Mosc. Math. J., 16:4 (2016), 751–765
[39] F. Hirzebruch, Th. Höfer, “On the Euler number of an orbifold”, Math. Ann., 286:1-3 (1990), 255–260 | DOI | MR | Zbl
[40] Y. Ito, M. Reid, “The McKay correspondence for finite subgroups of $\operatorname{SL}(3,\mathbb{C})$”, Higher-dimensional complex varieties (Trento, 1994), de Gruyter, Berlin, 1996, 221–240 | MR | Zbl
[41] M. Kapranov, The elliptic curve in the $S$-duality theory and Eisenstein series for Kac–Moody groups, 2000, 53 pp., arXiv: math.AG/0001005
[42] D. Knutson, $\lambda$-rings and the representation theory of the symmetric group, Lecture Notes in Math., 308, Springer-Verlag, Berlin–New York, 1973, iv+203 pp. | MR | Zbl
[43] E. Looijenga, “Motivic measures”, Séminaire Bourbaki, v. 1999/2000, Astérisque, 276, Soc. Math. France, Paris, 2002, 267–297 | MR | Zbl
[44] W. Lück, J. Rosenberg, “The equivariant Lefschetz fixed point theorem for proper cocompact $G$-manifolds”, High-dimensional manifold topology, World Sci. Publ., River Edge, NJ, 2003, 322–361 | DOI | MR | Zbl
[45] I. G. Macdonald, “The Poincaré polynomial of a symmetric product”, Proc. Cambridge Philos. Soc., 58:4 (1962), 563–568 | DOI | MR | Zbl
[46] J. Mazur, “Rationality of motivic zeta functions for curves with finite abelian group actions”, J. Pure Appl. Algebra, 217:7 (2013), 1335–1349 | DOI | MR | Zbl
[47] A. Morrison, J. Shen, Motivic classes of generalized Kummer schemes via relative power structures, 2015, 17 pp., arXiv: 1505.02989
[48] M.-H. Schwartz, “Classes caractéristiques définies par une stratification d'une variété analytique complexe”, C. R. Acad. Sci. Paris, 260 (1965), 3262–3264, 3535–3537 | MR | MR | Zbl
[49] M.-H. Schwartz, “Champs radiaux et préradiaux associés à une stratification”, C. R. Acad. Sci. Paris Sér. I Math., 303:6 (1986), 239–241 | MR | Zbl
[50] J. P. Serre, “Les espaces fibrés algébriques”, Anneaux de Chow et applications, Seminaire C. Chevalley, 2e année, Secrétariat mathématique, Paris, 1958, Exp. No 1, 1–37 | MR | Zbl
[51] R. P. Stanley, Enumerative combinatorics, v. 2, Cambridge Stud. Adv. Math., 62, Cambridge Univ. Press, Cambridge, 1999, xii+581 pp. | DOI | MR | Zbl
[52] A. Stapledon, “Representations on the cohomology of hypersurfaces and mirror symmetry”, Adv. Math., 226:6 (2011), 5268–5297 | DOI | MR | Zbl
[53] J. H. M. Steenbrink, “Mixed Hodge structure on the vanishing cohomology”, Real and complex singularities, Proc. 9th Nordic Summer School/NAVF Sympos. Math. (Oslo, 1976), Sijthoff and Noordhoff, Alphen aan den Rijn, 1977, 525–563 | MR | Zbl
[54] H. Tamanoi, “Generalized orbifold Euler characteristic of symmetric products and equivariant Morava $K$-theory”, Algebr. Geom. Topol., 1 (2001), 115–141 | DOI | MR | Zbl
[55] T. tom Dieck, Transformation groups and representation theory, Lecture Notes in Math., 766, Springer, Berlin, 1979, viii+309 pp. | MR | Zbl
[56] A. N. Varčenko, “Asymptotic Hodge structure in the vanishing cohomology”, Math. USSR-Izv., 18:3 (1982), 469–512 | DOI | MR | Zbl
[57] J.-L. Verdier, “Caractéristique d'Euler–Poincaré”, Bull. Soc. Math. France, 101 (1973), 441–445 | MR | Zbl
[58] C. T. C. Wall, “A note on symmetry of singularities”, Bull. London Math. Soc., 12:3 (1980), 169–175 | DOI | MR | Zbl
[59] E. Zaslow, “Topological orbifold models and quantum cohomology rings”, Comm. Math. Phys., 156:2 (1993), 301–331 | DOI | MR | Zbl