Equivariant analogues of the Euler characteristic and Macdonald type equations
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 72 (2017) no. 1, pp. 1-32 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

One of the simplest and, at the same time, most important invariants of a topological space is the Euler characteristic. A generalization of the notion of the Euler characteristic to the equivariant setting, that is, to spaces with an action of a group (say, finite) is far from unique. An equivariant analogue of the Euler characteristic can be defined as an element of the ring of representations of the group or as an element of the Burnside ring of the group. From physics came the notion of the orbifold Euler characteristic, and this was generalized to orbifold Euler characteristics of higher orders. The main property of the Euler characteristic (defined in terms of the cohomology with compact support) is its additivity. On some classes of spaces there are additive invariants other than the Euler characteristic, and they can be regarded as generalized Euler characteristics. For example, the class of a variety in the Grothendieck ring of complex quasi-projective varieties is a universal additive invariant on the class of complex quasi-projective varieties. Generalized analogues of the Euler characteristic can also be defined in the equivariant setting. There is a simple formula — the Macdonald equation — for the generating series of the Euler characteristics of the symmetric powers of a space: it is equal to the series $(1-t)^{-1}=1+t+t^2+\cdots$ independent of the space, raised to a power equal to the Euler characteristic of the space itself. Equations of a similar kind for other invariants (‘equivariant and generalized Euler characteristics’) are called Macdonald type equations. This survey discusses different versions of the Euler characteristic in the equivariant setting and describes some of their properties and Macdonald type equations. Bibliography: 59 titles.
Keywords: equivariant Euler characteristic, orbifold Euler characteristic.
Mots-clés : finite group actions
@article{RM_2017_72_1_a0,
     author = {S. M. Gusein-Zade},
     title = {Equivariant analogues of the {Euler} characteristic and {Macdonald} type equations},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {1--32},
     year = {2017},
     volume = {72},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2017_72_1_a0/}
}
TY  - JOUR
AU  - S. M. Gusein-Zade
TI  - Equivariant analogues of the Euler characteristic and Macdonald type equations
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2017
SP  - 1
EP  - 32
VL  - 72
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/RM_2017_72_1_a0/
LA  - en
ID  - RM_2017_72_1_a0
ER  - 
%0 Journal Article
%A S. M. Gusein-Zade
%T Equivariant analogues of the Euler characteristic and Macdonald type equations
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2017
%P 1-32
%V 72
%N 1
%U http://geodesic.mathdoc.fr/item/RM_2017_72_1_a0/
%G en
%F RM_2017_72_1_a0
S. M. Gusein-Zade. Equivariant analogues of the Euler characteristic and Macdonald type equations. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 72 (2017) no. 1, pp. 1-32. http://geodesic.mathdoc.fr/item/RM_2017_72_1_a0/

[1] N. A'Campo, “La fonction zêta d'une monodromie”, Comment. Math. Helv., 50 (1975), 233–248 | DOI | MR | Zbl

[2] M. Atiyah, G. Segal, “On equivariant Euler characteristics”, J. Geom. Phys., 6:4 (1989), 671–677 | DOI | MR | Zbl

[3] V. V. Batyrev, D. I. Dais, “Strong McKay correspondence, string-theoretic Hodge numbers and mirror symmetry”, Topology, 35:4 (1996), 901–929 | DOI | MR | Zbl

[4] K. Behrend, J. Bryan, B. Szendrői, “Motivic degree zero Donaldson–Thomas invariants”, Invent. Math., 192:1 (2013), 111–160 | DOI | MR | Zbl

[5] P. Berglund, M. Henningson, “Landau–Ginzburg orbifolds, mirror symmetry and the elliptic genus”, Nuclear Phys. B, 433:2 (1995), 311–332 | DOI | MR | Zbl

[6] P. Berglund, T. Hübsch, “A generalized construction of mirror manifolds”, Nuclear Phys. B, 393:1-2 (1993), 377–391 | DOI | MR | Zbl

[7] F. Bittner, “The universal Euler characteristic for varieties of characteristic zero”, Compos. Math., 140:4 (2004), 1011–1032 | DOI | MR | Zbl

[8] L. A. Borisov, Class of the affine line is a zero divisor in the Grothendieck ring, 2015 (v1 – 2014), 6 pp., arXiv: 1412.6194

[9] D. Bourqui, “Produit eulérien motivique et courbes rationnelles sur les variétés toriques”, Compos. Math., 145:6 (2009), 1360–1400 | DOI | MR | Zbl

[10] J. Bryan, A. Morrison, “Motivic classes of commuting varieties via power structures”, J. Algebraic Geom., 24:1 (2015), 183–199 | DOI | MR | Zbl

[11] S. Cappell, L. Maxim, T. Ohmoto, J. Schürmann, S. Yokura, “Characteristic classes of Hilbert schemes of points via symmetric products”, Geom. Topol., 17:2 (2013), 1165–1198 | DOI | MR | Zbl

[12] J. Cheah, The cohomology of smooth nested Hilbert schemes of points, Ph. D. Thesis, Univ. of Chicago, 1994, 237 pp. | MR

[13] C. H. Clemens, “Picard–Lefschetz theorem for families of nonsingular algebraic varieties acquiring ordinary singularities”, Trans. Amer. Math. Soc., 136 (1969), 93–108 | DOI | MR | Zbl

[14] A. Craw, “An introduction to motivic integration”, Strings and geometry, Clay Math. Proc., 3, Amer. Math. Soc., Providence, RI, 2004, 203–225 | MR | Zbl

[15] V. I. Danilov, A. G. Khovanskii, “Newton polyhedra and an algorithm for computing Hodge–Deligne numbers”, Math. USSR-Izv., 29:2 (1987), 279–298 | DOI | MR | Zbl

[16] P. Deligne, “Théorie de Hodge. II”, Inst. Hautes Études Sci. Publ. Math., 1971, no. 40, 5–57 | DOI | MR | Zbl

[17] P. Deligne, “Théorie de Hodge. III”, Inst. Hautes Études Sci. Publ. Math., 1974, no. 44, 5–77 | DOI | MR | Zbl

[18] J. Denef, F. Loeser, “Geometry on arc spaces of algebraic varieties”, European congress of mathematics (Barcelona, 2000), v. I, Progr. Math., 201, Birkhäuser, Basel, 2001, 327–348 | MR | Zbl

[19] A. Dimca, G. I. Lehrer, “Purity and equivariant weight polynomials”, Algebraic groups and Lie groups, Austral. Math. Soc. Lect. Ser., 9, Cambridge Univ. Press, Cambridge, 1997, 161–181 | MR | Zbl

[20] L. Dixon, J. A. Harvey, C. Vafa, E. Witten, “Strings on orbifolds”, Nuclear Phys. B, 261:4 (1985), 678–686 | DOI | MR

[21] L. Dixon, J. A. Harvey, C. Vafa, E. Witten, “Strings on orbifolds. II”, Nuclear Phys. B, 274:2 (1986), 285–314 | DOI | MR

[22] W. Ebeling, S. M. Gusein-Zade, “Radial index and Euler obstruction of a 1-form on a singular variety”, Geom. Dedicata, 113 (2005), 231–241 | DOI | MR | Zbl

[23] W. Ebeling, S. M. Gusein-Zade, “Indices of vector fields and 1-forms on singular varieties”, Global aspects of complex geometry, Springer, Berlin, 2006, 129–169 | DOI | MR | Zbl

[24] W. Ebeling, S. M. Gusein-Zade, “Equivariant indices of vector fields and 1-forms”, Eur. J. Math., 1:2 (2015), 286–301 | DOI | MR | Zbl

[25] W. Ebeling, S. M. Gusein-Zade, “Higher order spectra, equivariant Hodge–Deligne polynomials and Macdonald type equations”, Singularities and computer algebra, Festschrift for Gert-Martin Greuel on the occasion of his 70th birthday, Springer (to appear); 2015, 11 pp., arXiv: 1507.08088

[26] W. Ebeling, S. M. Gusein-Zade, “Orbifold zeta functions for dual invertible polynomials”, Proc. Edinb. Math. Soc. (2), 60:1 (2017), 99–106 | DOI

[27] W. Ebeling, A. Takahashi, “Mirror symmetry between orbifold curves and cusp singularities with group action”, Int. Math. Res. Not. IMRN, 2013:10, 2240–2270 | DOI | MR | Zbl

[28] H. Fan, T. Jarvis, Y. Ruan, “The Witten equation, mirror symmetry, and quantum singularity theory”, Ann. of Math. (2), 178:1 (2013), 1–106 | DOI | MR | Zbl

[29] E. Gorsky, “Adams operations and power structures”, Mosc. Math. J., 9:2 (2009), 305–323 | MR | Zbl

[30] S. M. Gusein-Zade, “Integration with respect to the Euler characteristic and its applications”, Russian Math. Surveys, 65:3 (2010), 399–432 | DOI | DOI | MR | Zbl

[31] S. M. Gusein-Zade, I. Luengo, A. Melle-Hernández, “A power structure over the Grothendieck ring of varieties”, Math. Res. Lett., 11:1 (2004), 49–57 | DOI | MR | Zbl

[32] S. M. Gusein-Zade, I. Luengo, A. Melle-Hernández, “Power structure over the Grothendieck ring of varieties and generating series of Hilbert schemes of points”, Michigan Math. J., 54:2 (2006), 353–359 | DOI | MR | Zbl

[33] S. M. Gusein-Zade, I. Luengo, A. Melle-Hernández, “On the power structure over the Grothendieck ring of varieties and its applications”, Proc. Steklov Inst. Math., 258:1 (2007), 53–64 | DOI | MR | Zbl

[34] S. M. Gusein-Zade, I. Luengo, A. Melle-Hernández, “On generating series of classes of equivariant Hilbert schemes of fat points”, Mosc. Math. J., 10:3 (2010), 593–602 | MR | Zbl

[35] S. M. Gusein-Zade, I. Luengo, A. Melle-Hernández, “On piecewise isomorphism of some varieties”, Azerb. J. Math., 1:2 (2011), 91–96 | MR | Zbl

[36] S. M. Gusein-Zade, I. Luengo, A. Melle-Hernández, “Higher order generalized Euler characteristics and generating series”, J. Geom. Phys., 95 (2015), 137–143 | DOI | MR | Zbl

[37] S. M. Gusein-Zade, I. Luengo, A. Melle-Hernández, “Higher order orbifold Euler characteristics for compact Lie group actions”, Proc. Roy. Soc. Edinburgh Sect. A, 145:6 (2015), 1215–1222 | DOI | MR | Zbl

[38] S. M. Gusein-Zade, I. Luengo, A. Melle-Hernández, “Equivariant versions of higher order orbifold Euler characteristics”, Mosc. Math. J., 16:4 (2016), 751–765

[39] F. Hirzebruch, Th. Höfer, “On the Euler number of an orbifold”, Math. Ann., 286:1-3 (1990), 255–260 | DOI | MR | Zbl

[40] Y. Ito, M. Reid, “The McKay correspondence for finite subgroups of $\operatorname{SL}(3,\mathbb{C})$”, Higher-dimensional complex varieties (Trento, 1994), de Gruyter, Berlin, 1996, 221–240 | MR | Zbl

[41] M. Kapranov, The elliptic curve in the $S$-duality theory and Eisenstein series for Kac–Moody groups, 2000, 53 pp., arXiv: math.AG/0001005

[42] D. Knutson, $\lambda$-rings and the representation theory of the symmetric group, Lecture Notes in Math., 308, Springer-Verlag, Berlin–New York, 1973, iv+203 pp. | MR | Zbl

[43] E. Looijenga, “Motivic measures”, Séminaire Bourbaki, v. 1999/2000, Astérisque, 276, Soc. Math. France, Paris, 2002, 267–297 | MR | Zbl

[44] W. Lück, J. Rosenberg, “The equivariant Lefschetz fixed point theorem for proper cocompact $G$-manifolds”, High-dimensional manifold topology, World Sci. Publ., River Edge, NJ, 2003, 322–361 | DOI | MR | Zbl

[45] I. G. Macdonald, “The Poincaré polynomial of a symmetric product”, Proc. Cambridge Philos. Soc., 58:4 (1962), 563–568 | DOI | MR | Zbl

[46] J. Mazur, “Rationality of motivic zeta functions for curves with finite abelian group actions”, J. Pure Appl. Algebra, 217:7 (2013), 1335–1349 | DOI | MR | Zbl

[47] A. Morrison, J. Shen, Motivic classes of generalized Kummer schemes via relative power structures, 2015, 17 pp., arXiv: 1505.02989

[48] M.-H. Schwartz, “Classes caractéristiques définies par une stratification d'une variété analytique complexe”, C. R. Acad. Sci. Paris, 260 (1965), 3262–3264, 3535–3537 | MR | MR | Zbl

[49] M.-H. Schwartz, “Champs radiaux et préradiaux associés à une stratification”, C. R. Acad. Sci. Paris Sér. I Math., 303:6 (1986), 239–241 | MR | Zbl

[50] J. P. Serre, “Les espaces fibrés algébriques”, Anneaux de Chow et applications, Seminaire C. Chevalley, 2e année, Secrétariat mathématique, Paris, 1958, Exp. No 1, 1–37 | MR | Zbl

[51] R. P. Stanley, Enumerative combinatorics, v. 2, Cambridge Stud. Adv. Math., 62, Cambridge Univ. Press, Cambridge, 1999, xii+581 pp. | DOI | MR | Zbl

[52] A. Stapledon, “Representations on the cohomology of hypersurfaces and mirror symmetry”, Adv. Math., 226:6 (2011), 5268–5297 | DOI | MR | Zbl

[53] J. H. M. Steenbrink, “Mixed Hodge structure on the vanishing cohomology”, Real and complex singularities, Proc. 9th Nordic Summer School/NAVF Sympos. Math. (Oslo, 1976), Sijthoff and Noordhoff, Alphen aan den Rijn, 1977, 525–563 | MR | Zbl

[54] H. Tamanoi, “Generalized orbifold Euler characteristic of symmetric products and equivariant Morava $K$-theory”, Algebr. Geom. Topol., 1 (2001), 115–141 | DOI | MR | Zbl

[55] T. tom Dieck, Transformation groups and representation theory, Lecture Notes in Math., 766, Springer, Berlin, 1979, viii+309 pp. | MR | Zbl

[56] A. N. Varčenko, “Asymptotic Hodge structure in the vanishing cohomology”, Math. USSR-Izv., 18:3 (1982), 469–512 | DOI | MR | Zbl

[57] J.-L. Verdier, “Caractéristique d'Euler–Poincaré”, Bull. Soc. Math. France, 101 (1973), 441–445 | MR | Zbl

[58] C. T. C. Wall, “A note on symmetry of singularities”, Bull. London Math. Soc., 12:3 (1980), 169–175 | DOI | MR | Zbl

[59] E. Zaslow, “Topological orbifold models and quantum cohomology rings”, Comm. Math. Phys., 156:2 (1993), 301–331 | DOI | MR | Zbl