On manifolds defined by 4-colourings of simple 3-polytopes
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 71 (2016) no. 6, pp. 1137-1139
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{RM_2016_71_6_a4,
author = {V. M. Buchstaber and T. E. Panov},
title = {On manifolds defined by 4-colourings of simple 3-polytopes},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {1137--1139},
year = {2016},
volume = {71},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2016_71_6_a4/}
}
TY - JOUR AU - V. M. Buchstaber AU - T. E. Panov TI - On manifolds defined by 4-colourings of simple 3-polytopes JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2016 SP - 1137 EP - 1139 VL - 71 IS - 6 UR - http://geodesic.mathdoc.fr/item/RM_2016_71_6_a4/ LA - en ID - RM_2016_71_6_a4 ER -
V. M. Buchstaber; T. E. Panov. On manifolds defined by 4-colourings of simple 3-polytopes. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 71 (2016) no. 6, pp. 1137-1139. http://geodesic.mathdoc.fr/item/RM_2016_71_6_a4/
[1] A. V. Pogorelov, Matem. zametki, 1:1 (1967), 3–8 | DOI | MR | Zbl
[2] E. M. Andreev, Matem. sb., 81:3 (1970), 445–478 | DOI | MR | Zbl
[3] A. Yu. Vesnin, Sib. matem. zhurn., 28:5 (1987), 50–53 | DOI | MR | Zbl
[4] M. W. Davis, T. Januszkiewicz, Duke Math. J., 62:2 (1991), 417–451 | DOI | MR | Zbl
[5] V. M. Buchstaber, T. E. Panov, Toric topology, Amer. Math. Soc., Providence, 2015 | DOI | MR | Zbl
[6] V. Buchstaber, N. Erokhovets, M. Masuda, T. Panov, S. Park, Cohomological rigidity of manifolds defined by right-angled 3-dimensional polytopes, 2016, 48 pp., arXiv: 1610.07575
[7] V. Buchstaber, N. Erokhovets, Fullerenes, polytopes and toric topology, 2016, 117 pp., arXiv: 1609.02949