@article{RM_2016_71_6_a2,
author = {Yu. N. Drozhzhinov},
title = {Multidimensional {Tauberian} theorems for generalized functions},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {1081--1134},
year = {2016},
volume = {71},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2016_71_6_a2/}
}
Yu. N. Drozhzhinov. Multidimensional Tauberian theorems for generalized functions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 71 (2016) no. 6, pp. 1081-1134. http://geodesic.mathdoc.fr/item/RM_2016_71_6_a2/
[1] A. G. Postnikov, “Tauberian theory and its applications”, Proc. Steklov Inst. Math., 144 (1980), 1–138 | MR | Zbl
[2] M. A. Subkhankulov, Tauberovy teoremy s ostatkom, Nauka, M., 1976, 399 pp. | MR
[3] T. H. Ganelius, Tauberian remainder theorems, Lecture Notes in Math., 232, Springer-Verlag, Berlin–New York, 1971, vi+75 pp. | DOI | MR | Zbl
[4] G. H. Hardy, Divergent series, Oxford, Clarendon Press, 1949, xvi+396 pp. | MR | MR | Zbl
[5] J. Korevaar, Tauberian theory. A century of developments, Grundlehren Math. Wiss., 329, Springer-Verlag, Berlin, 2004, xvi+483 pp. | DOI | MR | Zbl
[6] N. N. Bogolyubov, V. S. Vladimirov, A. N. Tavkhelidze, “On scaling asymptotics in quantum field theory. II”, Theoret. and Math. Phys., 12:3 (1972), 839–858 | DOI | MR
[7] V. S. Vladimirov, Yu. N. Drožžinov, B. I. Zavialov, Tauberian theorems for generalized functions, Math. Appl. (Soviet Ser.), 10, Kluwer Acad. Publ., Dordrecht, 1988, xvi+293 pp. | DOI | MR | MR | Zbl | Zbl
[8] V. S. Vladimirov, “Multidimensional generalization of a Tauberian theorem of Hardy and Littlewood”, Math. USSR-Izv., 10:5 (1976), 1031–1048 | DOI | MR | Zbl
[9] B. I. Zav'yalov, “On the behavior of the electromagnetic form factors in the neighborhood of the light cone”, Theoret. and Math. Phys., 16:1 (1973), 672–675 | DOI
[10] V. S. Vladimirov, Generalized functions in mathematical physics, Mir, Moscow, 1979, xii+362 pp. | MR | MR | Zbl | Zbl
[11] S. Łojasiewicz, “Sur la valeur et la limite d'une distribution en un point”, Studia Math., 16:1 (1957), 1–36 | MR | Zbl
[12] E. Seneta, Regularly varying functions, Lecture Notes in Math., 508, Springer-Verlag, Berlin–New York, 1976, v+112 pp. | DOI | MR | MR | Zbl | Zbl
[13] J. Karamata, “Sur un mode de croissance régulière des fonctions”, Mathematica, 4 (1930), 38–53 | Zbl
[14] N. H. Bingham, C. M. Goldie, J. I. Teugels, Regular variation, Encyclopedia Math. Appl., 27, Cambridge Univ. Press, Cambridge, 1989, xx+494 pp. | MR | Zbl
[15] O. von Grudzinski, Quasihomogeneous distributions, North-Holland Math. Stud., 165, North-Holland Publishing Co., Amsterdam, 1991, xviii+449 pp. | MR | Zbl
[16] I. M. Gelfand, G. E. Schilow, Verallgemeinerte Funktionen (Distributionen), v. I, Hochschulbücher für Math., 47, Funktionen und das Rechnen mit ihnen, VEB Deutscher Verlag der Wissenschaften, Berlin, 1960, 364 pp. | MR | MR | Zbl | Zbl
[17] B. I. Zav'yalov, “On the asymptotic properties of functions holomorphic in tubular cones”, Math. USSR-Sb., 64:1 (1989), 97–113 | DOI | MR | Zbl
[18] G. H. Hardy, J. E. Littlewood, “Contributions to the arithmetic theory of series”, Proc. London Math. Soc. (2), 11:1 (1913), 411–478 | DOI | MR | Zbl
[19] G. H. Hardy, J. E. Littlewood, “Tauberian theorems concerning power series and Dirichlet's series whose coefficients are positive”, Proc. London Math. Soc. (2), 13:1 (1914), 174–191 | DOI | MR | Zbl
[20] A. Tauber, “Ein Satz aus der Theorie der unendlichen Reihen”, Monatsh. Math. Phys., 8:1 (1897), 273–277 | DOI | MR | Zbl
[21] J. Karamata, “Sur certains “Tauberian theorems” de M. M. Hardy et Littlewood”, Mathematica, 3 (1930), 33–48 | Zbl
[22] Ju. N. Drožžinov, B. I. Zavyalov, “Tauberian theorems for generalized functions with supports in cones”, Math. USSR-Sb., 36:1 (1980), 75–86 | DOI | MR | Zbl
[23] V. V. Zharinov, “Quasiasymptotic behavior of Fourier hyperfunctions”, Theoret. and Math. Phys., 43:1 (1980), 302–306 | DOI | MR | Zbl
[24] Yu. N. Drozhzhinov, B. I. Zav'yalov, “A Tauberian theorem for quasiasymptotic decompositions of measures with supports in the positive octant”, Russian Acad. Sci. Sb. Math., 81:1 (1995), 185–209 | DOI | MR | Zbl
[25] Yu. N. Drozhzhinov, B. I. Zav'yalov, “Theorems of Hardy–Littlewood type for signed measures on a cone”, Sb. Math., 186:5 (1995), 675–693 | DOI | MR | Zbl
[26] A. L. Yakimiv, Probabilistic applications of Tauberian theorems, Mod. Probab. Stat., VSP, Leiden, 2005, viii+225 pp. | DOI | MR | Zbl | Zbl
[27] L. Frennemo, “Tauberian problems for the $n$-dimensional Laplace transform. II”, Math. Scand., 20 (1967), 225–239 | DOI | MR | Zbl
[28] P. Wagner, “On the quasi-asymptotic expansion of the causal fundamental solution of hyperbolic operators and systems”, Z. Anal. Anwend., 10:2 (1991), 159–167 | MR | Zbl
[29] L. Hörmander, “On the division of distributions by polynomials”, Ark. Mat., 3:6 (1958), 555–568 | DOI | MR | Zbl
[30] E. M. Čirka, “The theorems of Lindelöf and Fatou \break in $\mathbf C^n$”, Math. USSR-Sb., 21:4 (1973), 619–639 | DOI | MR | Zbl
[31] B. I. Zav'yalov, Yu. N. Drozhzhinov, “On a multi-dimensonal analogue of a theorem of Lindelöf”, Soviet Math. Dokl., 25 (1982), 51–52 | MR | Zbl
[32] Yu. N. Drozhzhinov, B. I. Zav'yalov, “Local Tauberian theorems in spaces of distributions related to cones, and their applications”, Izv. Math., 61:6 (1997), 1171–1214 | DOI | DOI | MR | Zbl
[33] Yu. V. Khurumov, “On Lindelöf's theorem in $\mathbf{C}^n$”, Soviet Math. Dokl., 28:806–809 (1983) | MR | Zbl
[34] Yu. N. Drozhzhinov, B. I. Zav'yalov, “Asymptotically homogeneous generalized functions and boundary properties of functions holomorphic in tubular cones”, Izv. Math., 70:6 (2006), 1117–1164 | DOI | DOI | MR | Zbl
[35] M. V. Keldysh, “On a Tauberian theorem”, Amer. Math. Soc. Transl. Ser. 2, 102, Amer. Math. Soc., Providence, RI, 1973, 133–143 | MR | Zbl
[36] A. G. Kostyuchenko, I. S. Sargsyan, Raspredelenie sobstvennykh znachenii, Nauka, M., 1979, 400 pp. | MR | Zbl
[37] M. V. Keldysh, “O sobstvennykh znacheniyakh i sobstvennykh funktsiyakh nekotorykh klassov nesamosopryazhennykh uravnenii”, Dokl. AN SSSR, 77:1 (1951), 11–14 | MR | Zbl
[38] N. N. Bogolyubov, S. N. Mergelyan, “O matematicheskikh rabotakh M. V. Keldysha”, Doklad na torzhestvennom zasedanii Akademii nauk SSSR, posvyaschennom pamyati akademika M. V. Keldysha (10 fevralya 1981\;g.), M. V. Keldysh. Tvorcheskii portret po vospominaniyam sovremennikov, Nauka, M., 2001, 46–55; http://www.keldysh.ru/memory/keldysh/bogolubov.htm
[39] B. I. Korenblyum, “Obschaya tauberova teorema dlya otnosheniya funktsii”, Dokl. AN SSSR, 88:5 (1953), 745–748 | MR | Zbl
[40] B. Bajšanski, J. Karamata, “Regularly varying functions and the principle of equicontinuity”, Publ. Ramanujan Inst., 1 (1968/69), 235–246 | MR | Zbl
[41] A. L. Yakymiv, “Multidimensional Tauberian theorems and their application to Bellman–Harris branching processes”, Math. USSR-Sb., 43:3 (1982), 413–425 | DOI | MR | Zbl
[42] S. M. Kozlov, “Multidimensional spectral asymptotics for elliptic operators”, Soviet Math. Dokl., 27 (1983), 153–158 | MR | Zbl
[43] A. L. Yakymiv, “A Tauberian theorem for multiple power series”, Sb. Math., 207:2 (2016), 286–313 | DOI | DOI | MR | Zbl
[44] Yu. N. Drozhzhinov, B. I. Zav'yalov, “Multidimensional Abelian and Tauberian comparison theorems”, Math. USSR-Sb., 68:1 (1991), 85–110 | DOI | MR | Zbl
[45] Yu. N. Drozhzhinov, B. I. Zav'yalov, “Multidimensional tauberian comparison theorems for holomorphic functions of bounded argument”, Math. USSR-Izv., 39:3 (1992), 1097–1112 | DOI | MR | Zbl
[46] Yu. N. Drozhzhinov, B. I. Zavialov, “Comparison Tauberian theorems and hyperbolic operators with constant coefficients”, Ufa Math. J., 7:3 (2015), 47–53 | DOI | MR
[47] N. Wiener, I am a mathematician, Victor Gollancz, Ltd., London, 1956, 380 pp. | Zbl | Zbl
[48] A. Beurling, “Sur les intégrales de Fourier absolument convergentes et leur application à une transformation fonctionnelle”, 9$^me$ congrès des mathématiciens scandinaves (Helsingfors, 1938), Helsinki, 1939, 345–366 | Zbl
[49] B. I. Korenblyum, “Obobschenie tauberovoi teoremy Vinera i garmonicheskii analiz bystrorastuschikh funktsii”, Tr. MMO, 7, GIFML, M., 1958, 121–148 | MR | Zbl
[50] Yu. N. Drozhzhinov, B. I. Zav'yalov, “A Wiener-type Tauberian theorem for generalized functions of slow growth”, Sb. Math., 189:7 (1998), 1047–1086 | DOI | DOI | MR | Zbl
[51] A. I. Komech, “Equations with homogeneous kernels and Mellin transformation of generalized functions”, Theoret. and Math. Phys., 27:2 (1976), 390–399 | DOI | MR | Zbl
[52] Yu. N. Drozhzhinov, B. I. Zav'yalov, “Tauberian theorem for generalized multiplicative convolutions”, Izv. Math., 64:1 (2000), 35–92 | DOI | DOI | MR | Zbl
[53] Yu. N. Drozhzhinov, B. I. Zav'yalov, “Tauberian theorems for generalized functions with values in Banach spaces”, Izv. Math., 66:4 (2002), 701–769 | DOI | DOI | MR | Zbl
[54] Yu. N. Drozhzhinov, B. I. Zav'yalov, “Multidimensional Tauberian theorems for Banach-space valued generalized functions”, Sb. Math., 194:11 (2003), 1599–1646 | DOI | DOI | MR | Zbl
[55] Yu. N. Drozhzhinov, B. I. Zavyalov, “Applications of Tauberian theorems in some problems in mathematical physics”, Theoret. and Math. Phys., 157:3 (2008), 1678–1693 | DOI | DOI | MR | Zbl
[56] S. Pilipović, J. Vindas, Multidimensional Tauberian theorems for wavelet and non-wavelet transforms, 2011 (v1 – 2010), 100 pp., arXiv: 1012.5090v2
[57] S. Pilipović, J. Vindas, “Multidimensional Tauberian theorems for vector-valued distributions”, Publ. Inst. Math. (Beograd) (N. S.), 95:109 (2014), 1–28 ; (2013), 28 pp., arXiv: 1304.4291v1 | DOI | MR | Zbl
[58] S. Kostadinova, S. Pilipović, K. Saneva, J. Vindas, “The ridgelet transform and quasiasymptotic behavior of distributions”, Pseudo-differential operators and generalized functions, Oper. Theory Adv. Appl., 245, Birkhäuser/Springer, Cham, 2015, 185–197 ; 2015 (v1 – 2014), 13 pp., arXiv: 1401.1853v2 | DOI | MR | Zbl