Multidimensional Tauberian theorems for generalized functions
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 71 (2016) no. 6, pp. 1081-1134 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This is a brief survey of multidimensional Tauberian theorems for generalized functions. Included are theorems of Hardy–Littlewood type, Tauberian and Abelian comparison theorems of Keldysh type, theorems of Wiener type, and Tauberian theorems for generalized functions with values in Banach spaces. Bibliography: 58 titles.
Keywords: generalized functions, quasi-asymptotics, Abelian theorems, Tauberian theorems, quasi-asymptotic boundedness, regularly varying functions, automodel functionals.
@article{RM_2016_71_6_a2,
     author = {Yu. N. Drozhzhinov},
     title = {Multidimensional {Tauberian} theorems for generalized functions},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {1081--1134},
     year = {2016},
     volume = {71},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2016_71_6_a2/}
}
TY  - JOUR
AU  - Yu. N. Drozhzhinov
TI  - Multidimensional Tauberian theorems for generalized functions
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2016
SP  - 1081
EP  - 1134
VL  - 71
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/RM_2016_71_6_a2/
LA  - en
ID  - RM_2016_71_6_a2
ER  - 
%0 Journal Article
%A Yu. N. Drozhzhinov
%T Multidimensional Tauberian theorems for generalized functions
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2016
%P 1081-1134
%V 71
%N 6
%U http://geodesic.mathdoc.fr/item/RM_2016_71_6_a2/
%G en
%F RM_2016_71_6_a2
Yu. N. Drozhzhinov. Multidimensional Tauberian theorems for generalized functions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 71 (2016) no. 6, pp. 1081-1134. http://geodesic.mathdoc.fr/item/RM_2016_71_6_a2/

[1] A. G. Postnikov, “Tauberian theory and its applications”, Proc. Steklov Inst. Math., 144 (1980), 1–138 | MR | Zbl

[2] M. A. Subkhankulov, Tauberovy teoremy s ostatkom, Nauka, M., 1976, 399 pp. | MR

[3] T. H. Ganelius, Tauberian remainder theorems, Lecture Notes in Math., 232, Springer-Verlag, Berlin–New York, 1971, vi+75 pp. | DOI | MR | Zbl

[4] G. H. Hardy, Divergent series, Oxford, Clarendon Press, 1949, xvi+396 pp. | MR | MR | Zbl

[5] J. Korevaar, Tauberian theory. A century of developments, Grundlehren Math. Wiss., 329, Springer-Verlag, Berlin, 2004, xvi+483 pp. | DOI | MR | Zbl

[6] N. N. Bogolyubov, V. S. Vladimirov, A. N. Tavkhelidze, “On scaling asymptotics in quantum field theory. II”, Theoret. and Math. Phys., 12:3 (1972), 839–858 | DOI | MR

[7] V. S. Vladimirov, Yu. N. Drožžinov, B. I. Zavialov, Tauberian theorems for generalized functions, Math. Appl. (Soviet Ser.), 10, Kluwer Acad. Publ., Dordrecht, 1988, xvi+293 pp. | DOI | MR | MR | Zbl | Zbl

[8] V. S. Vladimirov, “Multidimensional generalization of a Tauberian theorem of Hardy and Littlewood”, Math. USSR-Izv., 10:5 (1976), 1031–1048 | DOI | MR | Zbl

[9] B. I. Zav'yalov, “On the behavior of the electromagnetic form factors in the neighborhood of the light cone”, Theoret. and Math. Phys., 16:1 (1973), 672–675 | DOI

[10] V. S. Vladimirov, Generalized functions in mathematical physics, Mir, Moscow, 1979, xii+362 pp. | MR | MR | Zbl | Zbl

[11] S. Łojasiewicz, “Sur la valeur et la limite d'une distribution en un point”, Studia Math., 16:1 (1957), 1–36 | MR | Zbl

[12] E. Seneta, Regularly varying functions, Lecture Notes in Math., 508, Springer-Verlag, Berlin–New York, 1976, v+112 pp. | DOI | MR | MR | Zbl | Zbl

[13] J. Karamata, “Sur un mode de croissance régulière des fonctions”, Mathematica, 4 (1930), 38–53 | Zbl

[14] N. H. Bingham, C. M. Goldie, J. I. Teugels, Regular variation, Encyclopedia Math. Appl., 27, Cambridge Univ. Press, Cambridge, 1989, xx+494 pp. | MR | Zbl

[15] O. von Grudzinski, Quasihomogeneous distributions, North-Holland Math. Stud., 165, North-Holland Publishing Co., Amsterdam, 1991, xviii+449 pp. | MR | Zbl

[16] I. M. Gelfand, G. E. Schilow, Verallgemeinerte Funktionen (Distributionen), v. I, Hochschulbücher für Math., 47, Funktionen und das Rechnen mit ihnen, VEB Deutscher Verlag der Wissenschaften, Berlin, 1960, 364 pp. | MR | MR | Zbl | Zbl

[17] B. I. Zav'yalov, “On the asymptotic properties of functions holomorphic in tubular cones”, Math. USSR-Sb., 64:1 (1989), 97–113 | DOI | MR | Zbl

[18] G. H. Hardy, J. E. Littlewood, “Contributions to the arithmetic theory of series”, Proc. London Math. Soc. (2), 11:1 (1913), 411–478 | DOI | MR | Zbl

[19] G. H. Hardy, J. E. Littlewood, “Tauberian theorems concerning power series and Dirichlet's series whose coefficients are positive”, Proc. London Math. Soc. (2), 13:1 (1914), 174–191 | DOI | MR | Zbl

[20] A. Tauber, “Ein Satz aus der Theorie der unendlichen Reihen”, Monatsh. Math. Phys., 8:1 (1897), 273–277 | DOI | MR | Zbl

[21] J. Karamata, “Sur certains “Tauberian theorems” de M. M. Hardy et Littlewood”, Mathematica, 3 (1930), 33–48 | Zbl

[22] Ju. N. Drožžinov, B. I. Zavyalov, “Tauberian theorems for generalized functions with supports in cones”, Math. USSR-Sb., 36:1 (1980), 75–86 | DOI | MR | Zbl

[23] V. V. Zharinov, “Quasiasymptotic behavior of Fourier hyperfunctions”, Theoret. and Math. Phys., 43:1 (1980), 302–306 | DOI | MR | Zbl

[24] Yu. N. Drozhzhinov, B. I. Zav'yalov, “A Tauberian theorem for quasiasymptotic decompositions of measures with supports in the positive octant”, Russian Acad. Sci. Sb. Math., 81:1 (1995), 185–209 | DOI | MR | Zbl

[25] Yu. N. Drozhzhinov, B. I. Zav'yalov, “Theorems of Hardy–Littlewood type for signed measures on a cone”, Sb. Math., 186:5 (1995), 675–693 | DOI | MR | Zbl

[26] A. L. Yakimiv, Probabilistic applications of Tauberian theorems, Mod. Probab. Stat., VSP, Leiden, 2005, viii+225 pp. | DOI | MR | Zbl | Zbl

[27] L. Frennemo, “Tauberian problems for the $n$-dimensional Laplace transform. II”, Math. Scand., 20 (1967), 225–239 | DOI | MR | Zbl

[28] P. Wagner, “On the quasi-asymptotic expansion of the causal fundamental solution of hyperbolic operators and systems”, Z. Anal. Anwend., 10:2 (1991), 159–167 | MR | Zbl

[29] L. Hörmander, “On the division of distributions by polynomials”, Ark. Mat., 3:6 (1958), 555–568 | DOI | MR | Zbl

[30] E. M. Čirka, “The theorems of Lindelöf and Fatou \break in $\mathbf C^n$”, Math. USSR-Sb., 21:4 (1973), 619–639 | DOI | MR | Zbl

[31] B. I. Zav'yalov, Yu. N. Drozhzhinov, “On a multi-dimensonal analogue of a theorem of Lindelöf”, Soviet Math. Dokl., 25 (1982), 51–52 | MR | Zbl

[32] Yu. N. Drozhzhinov, B. I. Zav'yalov, “Local Tauberian theorems in spaces of distributions related to cones, and their applications”, Izv. Math., 61:6 (1997), 1171–1214 | DOI | DOI | MR | Zbl

[33] Yu. V. Khurumov, “On Lindelöf's theorem in $\mathbf{C}^n$”, Soviet Math. Dokl., 28:806–809 (1983) | MR | Zbl

[34] Yu. N. Drozhzhinov, B. I. Zav'yalov, “Asymptotically homogeneous generalized functions and boundary properties of functions holomorphic in tubular cones”, Izv. Math., 70:6 (2006), 1117–1164 | DOI | DOI | MR | Zbl

[35] M. V. Keldysh, “On a Tauberian theorem”, Amer. Math. Soc. Transl. Ser. 2, 102, Amer. Math. Soc., Providence, RI, 1973, 133–143 | MR | Zbl

[36] A. G. Kostyuchenko, I. S. Sargsyan, Raspredelenie sobstvennykh znachenii, Nauka, M., 1979, 400 pp. | MR | Zbl

[37] M. V. Keldysh, “O sobstvennykh znacheniyakh i sobstvennykh funktsiyakh nekotorykh klassov nesamosopryazhennykh uravnenii”, Dokl. AN SSSR, 77:1 (1951), 11–14 | MR | Zbl

[38] N. N. Bogolyubov, S. N. Mergelyan, “O matematicheskikh rabotakh M. V. Keldysha”, Doklad na torzhestvennom zasedanii Akademii nauk SSSR, posvyaschennom pamyati akademika M. V. Keldysha (10 fevralya 1981\;g.), M. V. Keldysh. Tvorcheskii portret po vospominaniyam sovremennikov, Nauka, M., 2001, 46–55; http://www.keldysh.ru/memory/keldysh/bogolubov.htm

[39] B. I. Korenblyum, “Obschaya tauberova teorema dlya otnosheniya funktsii”, Dokl. AN SSSR, 88:5 (1953), 745–748 | MR | Zbl

[40] B. Bajšanski, J. Karamata, “Regularly varying functions and the principle of equicontinuity”, Publ. Ramanujan Inst., 1 (1968/69), 235–246 | MR | Zbl

[41] A. L. Yakymiv, “Multidimensional Tauberian theorems and their application to Bellman–Harris branching processes”, Math. USSR-Sb., 43:3 (1982), 413–425 | DOI | MR | Zbl

[42] S. M. Kozlov, “Multidimensional spectral asymptotics for elliptic operators”, Soviet Math. Dokl., 27 (1983), 153–158 | MR | Zbl

[43] A. L. Yakymiv, “A Tauberian theorem for multiple power series”, Sb. Math., 207:2 (2016), 286–313 | DOI | DOI | MR | Zbl

[44] Yu. N. Drozhzhinov, B. I. Zav'yalov, “Multidimensional Abelian and Tauberian comparison theorems”, Math. USSR-Sb., 68:1 (1991), 85–110 | DOI | MR | Zbl

[45] Yu. N. Drozhzhinov, B. I. Zav'yalov, “Multidimensional tauberian comparison theorems for holomorphic functions of bounded argument”, Math. USSR-Izv., 39:3 (1992), 1097–1112 | DOI | MR | Zbl

[46] Yu. N. Drozhzhinov, B. I. Zavialov, “Comparison Tauberian theorems and hyperbolic operators with constant coefficients”, Ufa Math. J., 7:3 (2015), 47–53 | DOI | MR

[47] N. Wiener, I am a mathematician, Victor Gollancz, Ltd., London, 1956, 380 pp. | Zbl | Zbl

[48] A. Beurling, “Sur les intégrales de Fourier absolument convergentes et leur application à une transformation fonctionnelle”, 9$^me$ congrès des mathématiciens scandinaves (Helsingfors, 1938), Helsinki, 1939, 345–366 | Zbl

[49] B. I. Korenblyum, “Obobschenie tauberovoi teoremy Vinera i garmonicheskii analiz bystrorastuschikh funktsii”, Tr. MMO, 7, GIFML, M., 1958, 121–148 | MR | Zbl

[50] Yu. N. Drozhzhinov, B. I. Zav'yalov, “A Wiener-type Tauberian theorem for generalized functions of slow growth”, Sb. Math., 189:7 (1998), 1047–1086 | DOI | DOI | MR | Zbl

[51] A. I. Komech, “Equations with homogeneous kernels and Mellin transformation of generalized functions”, Theoret. and Math. Phys., 27:2 (1976), 390–399 | DOI | MR | Zbl

[52] Yu. N. Drozhzhinov, B. I. Zav'yalov, “Tauberian theorem for generalized multiplicative convolutions”, Izv. Math., 64:1 (2000), 35–92 | DOI | DOI | MR | Zbl

[53] Yu. N. Drozhzhinov, B. I. Zav'yalov, “Tauberian theorems for generalized functions with values in Banach spaces”, Izv. Math., 66:4 (2002), 701–769 | DOI | DOI | MR | Zbl

[54] Yu. N. Drozhzhinov, B. I. Zav'yalov, “Multidimensional Tauberian theorems for Banach-space valued generalized functions”, Sb. Math., 194:11 (2003), 1599–1646 | DOI | DOI | MR | Zbl

[55] Yu. N. Drozhzhinov, B. I. Zavyalov, “Applications of Tauberian theorems in some problems in mathematical physics”, Theoret. and Math. Phys., 157:3 (2008), 1678–1693 | DOI | DOI | MR | Zbl

[56] S. Pilipović, J. Vindas, Multidimensional Tauberian theorems for wavelet and non-wavelet transforms, 2011 (v1 – 2010), 100 pp., arXiv: 1012.5090v2

[57] S. Pilipović, J. Vindas, “Multidimensional Tauberian theorems for vector-valued distributions”, Publ. Inst. Math. (Beograd) (N. S.), 95:109 (2014), 1–28 ; (2013), 28 pp., arXiv: 1304.4291v1 | DOI | MR | Zbl

[58] S. Kostadinova, S. Pilipović, K. Saneva, J. Vindas, “The ridgelet transform and quasiasymptotic behavior of distributions”, Pseudo-differential operators and generalized functions, Oper. Theory Adv. Appl., 245, Birkhäuser/Springer, Cham, 2015, 185–197 ; 2015 (v1 – 2014), 13 pp., arXiv: 1401.1853v2 | DOI | MR | Zbl