@article{RM_2016_71_6_a1,
author = {S. G. Bobkov},
title = {Proximity of probability distributions in terms of {Fourier{\textendash}Stieltjes} transforms},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {1021--1079},
year = {2016},
volume = {71},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2016_71_6_a1/}
}
TY - JOUR AU - S. G. Bobkov TI - Proximity of probability distributions in terms of Fourier–Stieltjes transforms JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2016 SP - 1021 EP - 1079 VL - 71 IS - 6 UR - http://geodesic.mathdoc.fr/item/RM_2016_71_6_a1/ LA - en ID - RM_2016_71_6_a1 ER -
S. G. Bobkov. Proximity of probability distributions in terms of Fourier–Stieltjes transforms. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 71 (2016) no. 6, pp. 1021-1079. http://geodesic.mathdoc.fr/item/RM_2016_71_6_a1/
[1] V. Feller, Vvedenie v teoriyu veroyatnostei i ee prilozheniya, v. 2, 2-e izd., Mir, M., 1967, 752 pp. ; W. Feller, An introduction to probability theory and its applications, v. II, John Wiley Sons, Inc., New York–London–Sydney, 1966, xviii+636 pp. | MR | MR | Zbl
[2] V. V. Petrov, Summy nezavisimykh sluchainykh velichin, Nauka, M., 1972, 416 pp. ; V. V. Petrov, Sums of independent random variables, Ergeb. Math. Grenzgeb., 82, Springer-Verlag, New York–Heidelberg, 1975, x+346 pp. | MR | Zbl | MR | Zbl
[3] V. V. Petrov, Predelnye teoremy dlya summ nezavisimykh sluchainykh velichin, Nauka, M., 1987, 318 pp. | MR | Zbl
[4] C.-G. Esseen, “Fourier analysis of distribution functions. A mathematical study of the Laplace–Gaussian law”, Acta Math., 77 (1945), 1–125 | DOI | MR | Zbl
[5] A. C. Berry, “The accuracy of the Gaussian approximation to the sum of independent variates”, Trans. Amer. Math. Soc., 49 (1941), 122–136 | DOI | MR | Zbl
[6] A. S. Fainleib, “Obobschenie neravenstva Esseena i ego primenenie v veroyatnostnoi teorii chisel”, Izv. AN SSSR. Ser. matem., 32:4 (1968), 859–879 | MR | Zbl
[7] V. Bentkus, F. Götze, “Optimal rates of convergence in the CLT for quadratic forms”, Ann. Probab., 24:1 (1996), 466–490 | DOI | MR | Zbl
[8] H. Bohman, “Approximate Fourier analysis of distribution functions”, Ark. Mat., 4:2 (1961), 99–157 | DOI | MR | Zbl
[9] V. M. Zolotarev, “O svoistvakh i svyazyakh nekotorykh tipov metrik”, Issledovaniya po matematicheskoi statistike. 3, Zap. nauch. sem. LOMI, 87, Izd-vo “Nauka”, Leningrad. otd., L., 1979, 18–35 ; V. M. Zolotarev, “Properties of and relations among certain types of metrics”, J. Soviet Math., 17:6 (1981), 2218–2232 | MR | Zbl | DOI
[10] Yu. V. Linnik, I. V. Ostrovskii, Razlozheniya sluchainykh velichin i vektorov, Nauka, M., 1972, 479 pp. ; Yu. V. Linnik, I. V. Ostrovskii, Decomposition of random variables and vectors, Transl. Math. Monogr., 48, Amer. Math. Soc., Providence, RI, 1977, ix+380 pp. | MR | Zbl | Zbl
[11] V. M. Zolotarev, “Otsenki razlichiya raspredelenii v metrike Levi”, Sbornik statei. I, Posvyaschaetsya akademiku Ivanu Matveevichu Vinogradovu k ego vosmidesyatiletiyu, Tr. MIAN SSSR, 112, 1971, 224–231 | MR | Zbl
[12] A. Yu. Zaitsev, “O logarifmicheskom mnozhitele v neravenstvakh sglazhivaniya dlya rasstoyanii Levi i Levi–Prokhorova”, Teoriya veroyatn. i ee primen., 31:4 (1986), 782–784 ; A. Yu. Zaitsev, “On the logarithmic factor in smoothing inequalities for Lévi and Lévi–Prohorov distances”, Theory Probab. Appl., 31:4 (1987), 691–693 | MR | Zbl | DOI
[13] I. A. Ibragimov, Yu. V. Linnik, Nezavisimye i statsionarno svyazannye velichiny, Nauka, M., 1965, 524 pp. ; I. A. Ibragimov, Yu. V. Linnik, Independent and stationary sequences of random variables, Wolters-Noordhoff Publishing Company, Groningen, 1971, 443 pp. | MR | Zbl | MR | Zbl
[14] S. G. Bobkov, G. P. Chistyakov, F. Götze, “Berry–Esseen bounds in the entropic central limit theorem”, Probab. Theory Related Fields, 159:3-4 (2014), 435–478 | DOI | MR | Zbl
[15] Yu. V. Prokhorov, “Skhodimost sluchainykh protsessov i predelnye teoremy teorii veroyatnostei”, Teoriya veroyatn. i ee primen., 1:2 (1956), 177–238 | MR | Zbl
[16] V. V. Yurinskii, “Neravenstvo sglazhivaniya dlya otsenok rasstoyaniya Levi–Prokhorova”, Teoriya veroyatn. i ee primen., 20:1 (1975), 3–12 | Zbl
[17] V. A. Abramov, “Otsenka rasstoyaniya Levi–Prokhorova”, Teoriya veroyatn. i ee primen., 21:2 (1976), 406–410 | MR | Zbl
[18] A. Yu. Zaitsev, “Otsenki rasstoyaniya Levi–Prokhorova v terminakh kharakteristicheskikh funktsii i nekotorye ikh primeneniya”, Problemy teorii veroyatnostnykh raspredelenii. VII, Zap. nauch. sem. LOMI, 119, Izd-vo “Nauka”, Leningrad. otd., L., 1982, 108–127 ; A. Yu. Zaitsev, “Estimates for the Levy–Prokhorov distance in terms of characteristic functions and some of their applications”, J. Soviet Math., 27 (1984), 3070–3083 | MR | Zbl | DOI
[19] T. V. Arak, A. Yu. Zaitsev, “Ravnomernye predelnye teoremy dlya summ nezavisimykh sluchainykh velichin”, Tr. MIAN SSSR, 174, Izd-vo “Nauka”, Leningrad. otd., L., 1986, 3–214 ; T. V. Arak, A. Yu. Zaitsev, “Uniform limit theorems for sums of independent random variables”, Proc. Steklov Inst. Math., 174 (1988), 1–222 | MR | Zbl
[20] W. Beckner, “Inequalities in Fourier analysis”, Ann. of Math. (2), 102:1 (1975), 159–182 | DOI | MR | Zbl
[21] C.-G. Esseen, “On mean central limit theorems”, Kungl. Tekn. Högsk. Handl. Stockholm, 1958, no. 121, 30 pp. | MR | Zbl
[22] V. M. Zolotarev, “Idealnye metriki v probleme approksimatsii raspredelenii summ nezavisimykh sluchainykh velichin”, Teoriya veroyatn. i ee primen., 22:3 (1977), 449–465 ; V. M. Zolotarev, “Ideal metrics in the problem of approximating distributions of sums of independent random variables”, Theory Probab. Appl., 22:3 (1978), 433–449 | MR | Zbl | DOI
[23] V. M. Zolotarev, Modern theory of summation of random variables, Mod. Probab. Stat., VSP, Utrecht, 1997, x+412 pp. | DOI | MR | Zbl
[24] V. V. Senatov, “Odna otsenka metriki Levi–Prokhorova”, Teoriya veroyatn. i ee primen., 29:1 (1984), 108–113 ; V. V. Senatov, “An estimate of the Lévy–Prohorov metric”, Theory Probab. Appl., 29:1 (1985), 109–114 | MR | Zbl | DOI
[25] V. M. Zolotarev, “Ideal metrics in the problems of probability theory and mathematical statistics”, Austral. J. Statist., 21:3 (1979), 193–208 | DOI | MR | Zbl
[26] A. M. Vershik, “Long history of the Monge–Kantorovich transportation problem”, Math. Intelligencer, 35:4 (2013), 1–9 | DOI | MR | Zbl
[27] L. V. Kantorovich, “O peremeschenii mass”, Dokl. AN SSSR, 37:7-8 (1942), 227–229 ; РўРμРѕСЂРёСЏ РїСЂРμдставлРμРЅРёРNo, динамичРμСЃРєРёРμ СЃРёСЃС‚РμРјС‹. XI, РЎРїРμциальныРNo выпуск, Зап. науч. СЃРμРј. РџРћРњР�, 312, РџРћРњР�, РЎРџР±., 2004, 11–14 ; L. V. Kantorovich, “On the translocation of masses”, J. Math. Sci. (N. Y.), 133:4 (2006), 1381–1382 | Zbl | MR | Zbl | DOI
[28] L. V. Kantorovich, “Ob odnoi probleme Monzha”, v st. “Zasedaniya Moskovskogo matematicheskogo obschestva (rezyume dokladov)”, UMN, 3:2(24) (1948), 225–226 ; РўРμРѕСЂРёСЏ РїСЂРμдставлРμРЅРёРNo, динамичРμСЃРєРёРμ СЃРёСЃС‚РμРјС‹. XI, РЎРїРμциальныРNo выпуск, Зап. науч. СЃРμРј. РџРћРњР�, 312, РџРћРњР�, РЎРџР±., 2004, 15–16 ; L. V. Kantorovich, “On a problem of Monge”, J. Math. Sci. (N. Y.), 133:4 (2006), 1383 | MR | Zbl | DOI
[29] S. T. Rachev, “Zadacha Monzha–Kantorovicha o peremeschenii mass i ee primenenie v stokhastike”, Teoriya veroyatn. i ee primen., 29:4 (1984), 625–653 ; S. T. Rachev, “The Monge–Kantorovich mass transference problem and its stochastic applications”, Theory Probab. Appl., 29:4 (1985), 647–676 | MR | Zbl | DOI
[30] C. Villani, Topics in optimal transportation, Grad. Stud. Math., 58, Amer. Math. Soc., Providence, RI, 2003, xvi+370 pp. | MR | Zbl
[31] V. I. Bogachev, A. V. Kolesnikov, “Zadacha Monzha–Kantorovicha: dostizheniya, svyazi i perspektivy”, UMN, 67:5(407) (2012), 3–110 | DOI | MR | Zbl
[32] S. G. Bobkov, M. Ledoux, One-dimensional empirical measures, order statistics and Kantorovich transport distances, Mem. Amer. Math. Soc. (to appear); Preprint, 2014, 140\;pp. http://math.umn.edu/~bobko001/preprints/2014_BL_Order.statistics.13.pdf
[33] L. V. Kantorovich, G. P. Akilov, Funktsionalnyi analiz, 3-e izd., Nauka, M., 1984, 752 pp. ; L. V. Kantorovich, G. P. Akilov, Functional analysis, 2nd ed., Pergamon Press, Oxford–Elmsford, NY, 1982, xiv+589 pp. | MR | Zbl | MR | Zbl
[34] R. M. Dudley, Real analysis and probability, The Wadsworth Brooks/Cole Math. Ser., The Wadsworth Brooks/Cole Advanced Books Software, Pacific Grove, CA, 1989, xii+436 pp. | MR | Zbl
[35] E. Rio, “Upper bounds for minimal distances in the central limit theorem”, Ann. Inst. Henri Poincaré Probab. Stat., 45:3 (2009), 802–817 | DOI | MR | Zbl
[36] M. Talagrand, “Transportation cost for Gaussian and other product measures”, Geom. Funct. Anal., 6:3 (1996), 587–600 | DOI | MR | Zbl
[37] S. G. Bobkov, F. Götze, “Exponential integrability and transportation cost related to logarithmic Sobolev inequalities”, J. Funct. Anal., 163:1 (1999), 1–28 | DOI | MR | Zbl
[38] S. G. Bobkov, N. Gozlan, C. Roberto, P.-M. Samson, “Bounds on the deficit in the logarithmic Sobolev inequality”, J. Funct. Anal., 267:11 (2014), 4110–4138 | DOI | MR | Zbl
[39] A. E. Ingham, “A note on Fourier transforms”, J. London Math. Soc., 9:1 (1934), 29–32 | DOI | MR | Zbl
[40] R. N. Bhattacharya, R. Ranga Rao, Normal approximation and asymptotic expansions, Wiley Ser. Probab. Stat., John Wiley Sons, Inc., New York–London–Sydney, 1976, xiv+274 pp. ; Classics Appl. Math., 64, updated republication of the 1986 reprint, SIAM, Philadelphia, PA, 2010, xxii+316 pp. | MR | Zbl | DOI | Zbl
[41] W. Gautschi, “On inverses of Vandermonde and confluent Vandermonde matrices”, Numer. Math., 4 (1962), 117–123 | DOI | MR | Zbl
[42] S. G. Bobkov, “K odnoi teoreme V. N. Sudakova o tipichnykh raspredeleniyakh”, Veroyatnost i statistika. 15, Zap. nauch. sem. POMI, 368, POMI, SPb., 2009, 59–74 ; S. G. Bobkov, “On a theorem of V. N. Sudakov on typical distributions”, J. Math. Sci. (N. Y.), 167:4 (2010), 464–473 | MR | Zbl | DOI
[43] I. Pinelis, On the nonuniform Berry–Esseen bound, 2013, 20 pp., arXiv: 1301.2828
[44] I. Pinelis, More on the nonuniform Berry–Esseen bound, 2013, 8 pp., arXiv: 1302.0516
[45] H. Prawitz, “Limits for a distribution, if the characteristic function is given in a finite domain”, Skand. Aktuarietidskr., 1972 (1973), 138–154 | MR | Zbl
[46] H. Bohman, “To compute the distribution function when the characteristic function is known”, Skand. Aktuarietidskr., 1963 (1964), 41–46 | MR | Zbl
[47] J. D. Vaaler, “Some extremal functions in Fourier analysis”, Bull. Amer. Math. Soc. (N. S.), 12:2 (1985), 183–216 | DOI | MR | Zbl
[48] V. K. Matskyavichyus, “O nizhnei otsenke skorosti skhodimosti v tsentralnoi predelnoi teoreme”, Teoriya veroyatn. i ee primen., 28:3 (1983), 565–569 ; V. K. Matskyavichyus, “A lower bound for the convergence rate in the central limit theorem”, Theory Probab. Appl., 28:3 (1984), 596–601 | MR | Zbl | DOI
[49] I. G. Shevtsova, “Ob absolyutnykh konstantakh v neravenstve tipa Berri–Esseena”, Dokl. RAN, 456:6 (2014), 650–654 | DOI | MR | Zbl
[50] L. D. Meshalkin, B. A. Rogozin, “Otsenka rasstoyaniya mezhdu funktsiyami raspredeleniya po blizosti ikh kharakteristicheskikh funktsii i ee primenenie v tsentralnoi predelnoi teoreme”, Predelnye teoremy teorii veroyatnostei, Izd-vo AN UzSSR, Tashkent, 1963, 40–55
[51] S. V. Nagaev, “Nekotorye predelnye teoremy dlya bolshikh uklonenii”, Teoriya veroyatn. i ee primen., 10:2 (1965), 231–254 | MR | Zbl
[52] A. Bikyalis, “Otsenki ostatochnogo chlena v tsentralnoi predelnoi teoreme”, Litov. matem. sb., 6:3 (1966), 323–346 | MR | Zbl
[53] L. Paditz, “Abschätzungen der Konvergenzgeschwindigkeit zur Normalverteilung unter Voraussetzung einseitiger Momente”, Math. Nachr., 82 (1978), 131–156 | DOI | MR | Zbl
[54] L. Paditz, “On the analytical structure of the constant in the nonuniform version of the Esseen inequality”, Statistics, 20:3 (1989), 453–464 | DOI | MR | Zbl
[55] R. Michel, “On the constant in the nonuniform version of the Berry–Esseen theorem”, Z. Wahrscheinlichkeitstheor. verw. Geb., 55:1 (1981), 109–117 | DOI | MR | Zbl
[56] Yu. S. Nefedova, I. G. Shevtsova, “O tochnosti normalnoi approksimatsii dlya raspredelenii puassonovskikh sluchainykh summ”, Inform. i ee primen., 5:1 (2011), 39–45
[57] Yu. S. Nefedova, I. G. Shevtsova, “O neravnomernykh otsenkakh skorosti skhodimosti v tsentralnoi predelnoi teoreme”, Teoriya veroyatn. i ee primen., 57:1 (2012), 62–97 ; Yu. S. Nefedova, I. G. Shevtsova, “On nonuniform convergence rate estimates in the central limit theorem”, Theory Probab. Appl., 57:1 (2013), 28–59 | DOI | MR | Zbl | DOI
[58] E. Rio, “Asymptotic constants for minimal distance in the central limit theorem”, Electron. Commun. Probab., 16 (2011), 96–103 | DOI | MR | Zbl
[59] S. G. Bobkov, “Entropic approach to E. Rio's central limit theorem for $W_2$ transport distance”, Statist. Probab. Lett., 83:7 (2013), 1644–1648 | DOI | MR | Zbl
[60] S. G. Bobkov, “Berry–Esseen bounds and Edgeworth expansions in the central limit theorem for transport distances”, Probab. Theory Related Fields (to appear); Preprint, 2016, 29\;pp., \par \par http://math.umn.edu/~bobko001/preprints/CLT.for.W_p.6_Revision.pdf
[61] V. V. Senatov, Tsentralnaya predelnaya teorema. Tochnost approksimatsii i asimptoticheskie razlozheniya, Knizhnyi dom LIBROKOM, M., 2009, 352 pp.