Proximity of probability distributions in terms of Fourier–Stieltjes transforms
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 71 (2016) no. 6, pp. 1021-1079 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A survey is given of some results on smoothing inequalities for various probability metrics (in particular, for the Kolmogorov distance), and some analogues of these results in the class of functions of bounded variation are presented. Bibliography: 61 titles.
Keywords: probability metrics, smoothing inequalities.
@article{RM_2016_71_6_a1,
     author = {S. G. Bobkov},
     title = {Proximity of probability distributions in terms of {Fourier{\textendash}Stieltjes} transforms},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {1021--1079},
     year = {2016},
     volume = {71},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2016_71_6_a1/}
}
TY  - JOUR
AU  - S. G. Bobkov
TI  - Proximity of probability distributions in terms of Fourier–Stieltjes transforms
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2016
SP  - 1021
EP  - 1079
VL  - 71
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/RM_2016_71_6_a1/
LA  - en
ID  - RM_2016_71_6_a1
ER  - 
%0 Journal Article
%A S. G. Bobkov
%T Proximity of probability distributions in terms of Fourier–Stieltjes transforms
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2016
%P 1021-1079
%V 71
%N 6
%U http://geodesic.mathdoc.fr/item/RM_2016_71_6_a1/
%G en
%F RM_2016_71_6_a1
S. G. Bobkov. Proximity of probability distributions in terms of Fourier–Stieltjes transforms. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 71 (2016) no. 6, pp. 1021-1079. http://geodesic.mathdoc.fr/item/RM_2016_71_6_a1/

[1] V. Feller, Vvedenie v teoriyu veroyatnostei i ee prilozheniya, v. 2, 2-e izd., Mir, M., 1967, 752 pp. ; W. Feller, An introduction to probability theory and its applications, v. II, John Wiley Sons, Inc., New York–London–Sydney, 1966, xviii+636 pp. | MR | MR | Zbl

[2] V. V. Petrov, Summy nezavisimykh sluchainykh velichin, Nauka, M., 1972, 416 pp. ; V. V. Petrov, Sums of independent random variables, Ergeb. Math. Grenzgeb., 82, Springer-Verlag, New York–Heidelberg, 1975, x+346 pp. | MR | Zbl | MR | Zbl

[3] V. V. Petrov, Predelnye teoremy dlya summ nezavisimykh sluchainykh velichin, Nauka, M., 1987, 318 pp. | MR | Zbl

[4] C.-G. Esseen, “Fourier analysis of distribution functions. A mathematical study of the Laplace–Gaussian law”, Acta Math., 77 (1945), 1–125 | DOI | MR | Zbl

[5] A. C. Berry, “The accuracy of the Gaussian approximation to the sum of independent variates”, Trans. Amer. Math. Soc., 49 (1941), 122–136 | DOI | MR | Zbl

[6] A. S. Fainleib, “Obobschenie neravenstva Esseena i ego primenenie v veroyatnostnoi teorii chisel”, Izv. AN SSSR. Ser. matem., 32:4 (1968), 859–879 | MR | Zbl

[7] V. Bentkus, F. Götze, “Optimal rates of convergence in the CLT for quadratic forms”, Ann. Probab., 24:1 (1996), 466–490 | DOI | MR | Zbl

[8] H. Bohman, “Approximate Fourier analysis of distribution functions”, Ark. Mat., 4:2 (1961), 99–157 | DOI | MR | Zbl

[9] V. M. Zolotarev, “O svoistvakh i svyazyakh nekotorykh tipov metrik”, Issledovaniya po matematicheskoi statistike. 3, Zap. nauch. sem. LOMI, 87, Izd-vo “Nauka”, Leningrad. otd., L., 1979, 18–35 ; V. M. Zolotarev, “Properties of and relations among certain types of metrics”, J. Soviet Math., 17:6 (1981), 2218–2232 | MR | Zbl | DOI

[10] Yu. V. Linnik, I. V. Ostrovskii, Razlozheniya sluchainykh velichin i vektorov, Nauka, M., 1972, 479 pp. ; Yu. V. Linnik, I. V. Ostrovskii, Decomposition of random variables and vectors, Transl. Math. Monogr., 48, Amer. Math. Soc., Providence, RI, 1977, ix+380 pp. | MR | Zbl | Zbl

[11] V. M. Zolotarev, “Otsenki razlichiya raspredelenii v metrike Levi”, Sbornik statei. I, Posvyaschaetsya akademiku Ivanu Matveevichu Vinogradovu k ego vosmidesyatiletiyu, Tr. MIAN SSSR, 112, 1971, 224–231 | MR | Zbl

[12] A. Yu. Zaitsev, “O logarifmicheskom mnozhitele v neravenstvakh sglazhivaniya dlya rasstoyanii Levi i Levi–Prokhorova”, Teoriya veroyatn. i ee primen., 31:4 (1986), 782–784 ; A. Yu. Zaitsev, “On the logarithmic factor in smoothing inequalities for Lévi and Lévi–Prohorov distances”, Theory Probab. Appl., 31:4 (1987), 691–693 | MR | Zbl | DOI

[13] I. A. Ibragimov, Yu. V. Linnik, Nezavisimye i statsionarno svyazannye velichiny, Nauka, M., 1965, 524 pp. ; I. A. Ibragimov, Yu. V. Linnik, Independent and stationary sequences of random variables, Wolters-Noordhoff Publishing Company, Groningen, 1971, 443 pp. | MR | Zbl | MR | Zbl

[14] S. G. Bobkov, G. P. Chistyakov, F. Götze, “Berry–Esseen bounds in the entropic central limit theorem”, Probab. Theory Related Fields, 159:3-4 (2014), 435–478 | DOI | MR | Zbl

[15] Yu. V. Prokhorov, “Skhodimost sluchainykh protsessov i predelnye teoremy teorii veroyatnostei”, Teoriya veroyatn. i ee primen., 1:2 (1956), 177–238 | MR | Zbl

[16] V. V. Yurinskii, “Neravenstvo sglazhivaniya dlya otsenok rasstoyaniya Levi–Prokhorova”, Teoriya veroyatn. i ee primen., 20:1 (1975), 3–12 | Zbl

[17] V. A. Abramov, “Otsenka rasstoyaniya Levi–Prokhorova”, Teoriya veroyatn. i ee primen., 21:2 (1976), 406–410 | MR | Zbl

[18] A. Yu. Zaitsev, “Otsenki rasstoyaniya Levi–Prokhorova v terminakh kharakteristicheskikh funktsii i nekotorye ikh primeneniya”, Problemy teorii veroyatnostnykh raspredelenii. VII, Zap. nauch. sem. LOMI, 119, Izd-vo “Nauka”, Leningrad. otd., L., 1982, 108–127 ; A. Yu. Zaitsev, “Estimates for the Levy–Prokhorov distance in terms of characteristic functions and some of their applications”, J. Soviet Math., 27 (1984), 3070–3083 | MR | Zbl | DOI

[19] T. V. Arak, A. Yu. Zaitsev, “Ravnomernye predelnye teoremy dlya summ nezavisimykh sluchainykh velichin”, Tr. MIAN SSSR, 174, Izd-vo “Nauka”, Leningrad. otd., L., 1986, 3–214 ; T. V. Arak, A. Yu. Zaitsev, “Uniform limit theorems for sums of independent random variables”, Proc. Steklov Inst. Math., 174 (1988), 1–222 | MR | Zbl

[20] W. Beckner, “Inequalities in Fourier analysis”, Ann. of Math. (2), 102:1 (1975), 159–182 | DOI | MR | Zbl

[21] C.-G. Esseen, “On mean central limit theorems”, Kungl. Tekn. Högsk. Handl. Stockholm, 1958, no. 121, 30 pp. | MR | Zbl

[22] V. M. Zolotarev, “Idealnye metriki v probleme approksimatsii raspredelenii summ nezavisimykh sluchainykh velichin”, Teoriya veroyatn. i ee primen., 22:3 (1977), 449–465 ; V. M. Zolotarev, “Ideal metrics in the problem of approximating distributions of sums of independent random variables”, Theory Probab. Appl., 22:3 (1978), 433–449 | MR | Zbl | DOI

[23] V. M. Zolotarev, Modern theory of summation of random variables, Mod. Probab. Stat., VSP, Utrecht, 1997, x+412 pp. | DOI | MR | Zbl

[24] V. V. Senatov, “Odna otsenka metriki Levi–Prokhorova”, Teoriya veroyatn. i ee primen., 29:1 (1984), 108–113 ; V. V. Senatov, “An estimate of the Lévy–Prohorov metric”, Theory Probab. Appl., 29:1 (1985), 109–114 | MR | Zbl | DOI

[25] V. M. Zolotarev, “Ideal metrics in the problems of probability theory and mathematical statistics”, Austral. J. Statist., 21:3 (1979), 193–208 | DOI | MR | Zbl

[26] A. M. Vershik, “Long history of the Monge–Kantorovich transportation problem”, Math. Intelligencer, 35:4 (2013), 1–9 | DOI | MR | Zbl

[27] L. V. Kantorovich, “O peremeschenii mass”, Dokl. AN SSSR, 37:7-8 (1942), 227–229 ; РўРμРѕСЂРёСЏ РїСЂРμдставлРμРЅРёРNo, динамичРμСЃРєРёРμ СЃРёСЃС‚РμРјС‹. XI, РЎРїРμциальныРNo выпуск, Зап. науч. СЃРμРј. РџРћРњР�, 312, РџРћРњР�, РЎРџР±., 2004, 11–14 ; L. V. Kantorovich, “On the translocation of masses”, J. Math. Sci. (N. Y.), 133:4 (2006), 1381–1382 | Zbl | MR | Zbl | DOI

[28] L. V. Kantorovich, “Ob odnoi probleme Monzha”, v st. “Zasedaniya Moskovskogo matematicheskogo obschestva (rezyume dokladov)”, UMN, 3:2(24) (1948), 225–226 ; РўРμРѕСЂРёСЏ РїСЂРμдставлРμРЅРёРNo, динамичРμСЃРєРёРμ СЃРёСЃС‚РμРјС‹. XI, РЎРїРμциальныРNo выпуск, Зап. науч. СЃРμРј. РџРћРњР�, 312, РџРћРњР�, РЎРџР±., 2004, 15–16 ; L. V. Kantorovich, “On a problem of Monge”, J. Math. Sci. (N. Y.), 133:4 (2006), 1383 | MR | Zbl | DOI

[29] S. T. Rachev, “Zadacha Monzha–Kantorovicha o peremeschenii mass i ee primenenie v stokhastike”, Teoriya veroyatn. i ee primen., 29:4 (1984), 625–653 ; S. T. Rachev, “The Monge–Kantorovich mass transference problem and its stochastic applications”, Theory Probab. Appl., 29:4 (1985), 647–676 | MR | Zbl | DOI

[30] C. Villani, Topics in optimal transportation, Grad. Stud. Math., 58, Amer. Math. Soc., Providence, RI, 2003, xvi+370 pp. | MR | Zbl

[31] V. I. Bogachev, A. V. Kolesnikov, “Zadacha Monzha–Kantorovicha: dostizheniya, svyazi i perspektivy”, UMN, 67:5(407) (2012), 3–110 | DOI | MR | Zbl

[32] S. G. Bobkov, M. Ledoux, One-dimensional empirical measures, order statistics and Kantorovich transport distances, Mem. Amer. Math. Soc. (to appear); Preprint, 2014, 140\;pp. http://math.umn.edu/~bobko001/preprints/2014_BL_Order.statistics.13.pdf

[33] L. V. Kantorovich, G. P. Akilov, Funktsionalnyi analiz, 3-e izd., Nauka, M., 1984, 752 pp. ; L. V. Kantorovich, G. P. Akilov, Functional analysis, 2nd ed., Pergamon Press, Oxford–Elmsford, NY, 1982, xiv+589 pp. | MR | Zbl | MR | Zbl

[34] R. M. Dudley, Real analysis and probability, The Wadsworth Brooks/Cole Math. Ser., The Wadsworth Brooks/Cole Advanced Books Software, Pacific Grove, CA, 1989, xii+436 pp. | MR | Zbl

[35] E. Rio, “Upper bounds for minimal distances in the central limit theorem”, Ann. Inst. Henri Poincaré Probab. Stat., 45:3 (2009), 802–817 | DOI | MR | Zbl

[36] M. Talagrand, “Transportation cost for Gaussian and other product measures”, Geom. Funct. Anal., 6:3 (1996), 587–600 | DOI | MR | Zbl

[37] S. G. Bobkov, F. Götze, “Exponential integrability and transportation cost related to logarithmic Sobolev inequalities”, J. Funct. Anal., 163:1 (1999), 1–28 | DOI | MR | Zbl

[38] S. G. Bobkov, N. Gozlan, C. Roberto, P.-M. Samson, “Bounds on the deficit in the logarithmic Sobolev inequality”, J. Funct. Anal., 267:11 (2014), 4110–4138 | DOI | MR | Zbl

[39] A. E. Ingham, “A note on Fourier transforms”, J. London Math. Soc., 9:1 (1934), 29–32 | DOI | MR | Zbl

[40] R. N. Bhattacharya, R. Ranga Rao, Normal approximation and asymptotic expansions, Wiley Ser. Probab. Stat., John Wiley Sons, Inc., New York–London–Sydney, 1976, xiv+274 pp. ; Classics Appl. Math., 64, updated republication of the 1986 reprint, SIAM, Philadelphia, PA, 2010, xxii+316 pp. | MR | Zbl | DOI | Zbl

[41] W. Gautschi, “On inverses of Vandermonde and confluent Vandermonde matrices”, Numer. Math., 4 (1962), 117–123 | DOI | MR | Zbl

[42] S. G. Bobkov, “K odnoi teoreme V. N. Sudakova o tipichnykh raspredeleniyakh”, Veroyatnost i statistika. 15, Zap. nauch. sem. POMI, 368, POMI, SPb., 2009, 59–74 ; S. G. Bobkov, “On a theorem of V. N. Sudakov on typical distributions”, J. Math. Sci. (N. Y.), 167:4 (2010), 464–473 | MR | Zbl | DOI

[43] I. Pinelis, On the nonuniform Berry–Esseen bound, 2013, 20 pp., arXiv: 1301.2828

[44] I. Pinelis, More on the nonuniform Berry–Esseen bound, 2013, 8 pp., arXiv: 1302.0516

[45] H. Prawitz, “Limits for a distribution, if the characteristic function is given in a finite domain”, Skand. Aktuarietidskr., 1972 (1973), 138–154 | MR | Zbl

[46] H. Bohman, “To compute the distribution function when the characteristic function is known”, Skand. Aktuarietidskr., 1963 (1964), 41–46 | MR | Zbl

[47] J. D. Vaaler, “Some extremal functions in Fourier analysis”, Bull. Amer. Math. Soc. (N. S.), 12:2 (1985), 183–216 | DOI | MR | Zbl

[48] V. K. Matskyavichyus, “O nizhnei otsenke skorosti skhodimosti v tsentralnoi predelnoi teoreme”, Teoriya veroyatn. i ee primen., 28:3 (1983), 565–569 ; V. K. Matskyavichyus, “A lower bound for the convergence rate in the central limit theorem”, Theory Probab. Appl., 28:3 (1984), 596–601 | MR | Zbl | DOI

[49] I. G. Shevtsova, “Ob absolyutnykh konstantakh v neravenstve tipa Berri–Esseena”, Dokl. RAN, 456:6 (2014), 650–654 | DOI | MR | Zbl

[50] L. D. Meshalkin, B. A. Rogozin, “Otsenka rasstoyaniya mezhdu funktsiyami raspredeleniya po blizosti ikh kharakteristicheskikh funktsii i ee primenenie v tsentralnoi predelnoi teoreme”, Predelnye teoremy teorii veroyatnostei, Izd-vo AN UzSSR, Tashkent, 1963, 40–55

[51] S. V. Nagaev, “Nekotorye predelnye teoremy dlya bolshikh uklonenii”, Teoriya veroyatn. i ee primen., 10:2 (1965), 231–254 | MR | Zbl

[52] A. Bikyalis, “Otsenki ostatochnogo chlena v tsentralnoi predelnoi teoreme”, Litov. matem. sb., 6:3 (1966), 323–346 | MR | Zbl

[53] L. Paditz, “Abschätzungen der Konvergenzgeschwindigkeit zur Normalverteilung unter Voraussetzung einseitiger Momente”, Math. Nachr., 82 (1978), 131–156 | DOI | MR | Zbl

[54] L. Paditz, “On the analytical structure of the constant in the nonuniform version of the Esseen inequality”, Statistics, 20:3 (1989), 453–464 | DOI | MR | Zbl

[55] R. Michel, “On the constant in the nonuniform version of the Berry–Esseen theorem”, Z. Wahrscheinlichkeitstheor. verw. Geb., 55:1 (1981), 109–117 | DOI | MR | Zbl

[56] Yu. S. Nefedova, I. G. Shevtsova, “O tochnosti normalnoi approksimatsii dlya raspredelenii puassonovskikh sluchainykh summ”, Inform. i ee primen., 5:1 (2011), 39–45

[57] Yu. S. Nefedova, I. G. Shevtsova, “O neravnomernykh otsenkakh skorosti skhodimosti v tsentralnoi predelnoi teoreme”, Teoriya veroyatn. i ee primen., 57:1 (2012), 62–97 ; Yu. S. Nefedova, I. G. Shevtsova, “On nonuniform convergence rate estimates in the central limit theorem”, Theory Probab. Appl., 57:1 (2013), 28–59 | DOI | MR | Zbl | DOI

[58] E. Rio, “Asymptotic constants for minimal distance in the central limit theorem”, Electron. Commun. Probab., 16 (2011), 96–103 | DOI | MR | Zbl

[59] S. G. Bobkov, “Entropic approach to E. Rio's central limit theorem for $W_2$ transport distance”, Statist. Probab. Lett., 83:7 (2013), 1644–1648 | DOI | MR | Zbl

[60] S. G. Bobkov, “Berry–Esseen bounds and Edgeworth expansions in the central limit theorem for transport distances”, Probab. Theory Related Fields (to appear); Preprint, 2016, 29\;pp., \par \par http://math.umn.edu/~bobko001/preprints/CLT.for.W_p.6_Revision.pdf

[61] V. V. Senatov, Tsentralnaya predelnaya teorema. Tochnost approksimatsii i asimptoticheskie razlozheniya, Knizhnyi dom LIBROKOM, M., 2009, 352 pp.