On characterization of positive maps preserving continuity of the von Neumann entropy
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 71 (2016) no. 5, pp. 965-966 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_2016_71_5_a2,
     author = {M. E. Shirokov},
     title = {On characterization of positive maps preserving continuity of the {von~Neumann} entropy},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {965--966},
     year = {2016},
     volume = {71},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2016_71_5_a2/}
}
TY  - JOUR
AU  - M. E. Shirokov
TI  - On characterization of positive maps preserving continuity of the von Neumann entropy
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2016
SP  - 965
EP  - 966
VL  - 71
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/RM_2016_71_5_a2/
LA  - en
ID  - RM_2016_71_5_a2
ER  - 
%0 Journal Article
%A M. E. Shirokov
%T On characterization of positive maps preserving continuity of the von Neumann entropy
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2016
%P 965-966
%V 71
%N 5
%U http://geodesic.mathdoc.fr/item/RM_2016_71_5_a2/
%G en
%F RM_2016_71_5_a2
M. E. Shirokov. On characterization of positive maps preserving continuity of the von Neumann entropy. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 71 (2016) no. 5, pp. 965-966. http://geodesic.mathdoc.fr/item/RM_2016_71_5_a2/

[1] A. S. Holevo, Quantum systems, channels, information. A mathematical introduction, De Gruyter Stud. Math. Phys., 16, De Gruyter, Berlin, 2012, xiv+349 pp. | DOI | MR | Zbl

[2] M. E. Shirokov, Sb. Math., 202:10 (2011), 1537–1564 | DOI | DOI | MR | Zbl

[3] G. Lindblad, Comm. Math. Phys., 39:2 (1974), 111–119 | DOI | MR | Zbl

[4] R. Alicki, M. Fannes, J. Phys. A, 37:5 (2004), L55–L57 | DOI | MR | Zbl

[5] A. Winter, Comm. Math. Phys., 347:1 (2016), 291–313 | DOI | MR

[6] M. E. Shirokov, The convex closure of the output entropy of infinite dimensional channels and the additivity problem, 2006, 24 pp., arXiv: quant-ph/0608090