On characterization of positive maps preserving continuity of the von Neumann entropy
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 71 (2016) no. 5, pp. 965-966
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{RM_2016_71_5_a2,
author = {M. E. Shirokov},
title = {On characterization of positive maps preserving continuity of the {von~Neumann} entropy},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {965--966},
year = {2016},
volume = {71},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2016_71_5_a2/}
}
TY - JOUR AU - M. E. Shirokov TI - On characterization of positive maps preserving continuity of the von Neumann entropy JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2016 SP - 965 EP - 966 VL - 71 IS - 5 UR - http://geodesic.mathdoc.fr/item/RM_2016_71_5_a2/ LA - en ID - RM_2016_71_5_a2 ER -
M. E. Shirokov. On characterization of positive maps preserving continuity of the von Neumann entropy. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 71 (2016) no. 5, pp. 965-966. http://geodesic.mathdoc.fr/item/RM_2016_71_5_a2/
[1] A. S. Holevo, Quantum systems, channels, information. A mathematical introduction, De Gruyter Stud. Math. Phys., 16, De Gruyter, Berlin, 2012, xiv+349 pp. | DOI | MR | Zbl
[2] M. E. Shirokov, Sb. Math., 202:10 (2011), 1537–1564 | DOI | DOI | MR | Zbl
[3] G. Lindblad, Comm. Math. Phys., 39:2 (1974), 111–119 | DOI | MR | Zbl
[4] R. Alicki, M. Fannes, J. Phys. A, 37:5 (2004), L55–L57 | DOI | MR | Zbl
[5] A. Winter, Comm. Math. Phys., 347:1 (2016), 291–313 | DOI | MR
[6] M. E. Shirokov, The convex closure of the output entropy of infinite dimensional channels and the additivity problem, 2006, 24 pp., arXiv: quant-ph/0608090