Mots-clés : conditions for $p$-subordination
@article{RM_2016_71_5_a1,
author = {A. A. Shkalikov},
title = {Perturbations of self-adjoint and normal operators with discrete spectrum},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {907--964},
year = {2016},
volume = {71},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2016_71_5_a1/}
}
A. A. Shkalikov. Perturbations of self-adjoint and normal operators with discrete spectrum. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 71 (2016) no. 5, pp. 907-964. http://geodesic.mathdoc.fr/item/RM_2016_71_5_a1/
[1] M. V. Keldysh, “O sobstvennykh znacheniyakh i sobstvennykh funktsiyakh nekotorykh klassov nesamosopryazhennykh uravnenii”, Dokl. AN SSSR, 77:1 (1951), 11–14 | MR | Zbl
[2] M. V. Keldysh, “On a Tauberian theorem”, Amer. Math. Soc. Transl. Ser. 2, 102, Amer. Math. Soc., Providence, RI, 1973, 133–143 | MR | Zbl
[3] M. V. Keldysh, “On the completeness of the eigenfunctions of some classes of non-selfadjoint linear operators”, Russian Math. Surveys, 26:4 (1971), 15–44 | DOI | MR | Zbl
[4] Ya. D. Tamarkin, O nekotorykh obschikh zadachakh teorii obyknovennykh lineinykh differentsialnykh uravnenii i o razlozhenii proizvolnykh funktsii v ryady, Tip. M. P. Frolovoi, Petrograd, 1917, xiv+308 pp. | Zbl
[5] T. Carleman, “Über die asymptotische Verteilung der Eigenwerte partieller Differentialgleichungen”, Ber. Verh. Sächs. Akad. Leipzig, 88 (1936), 119–132 | Zbl
[6] F. E. Browder, “On the eigenfunctions and eigenvalues of the general linear elliptic differential operator”, Proc. Nat. Acad. Sci. U. S. A., 39 (1953), 433–439 | DOI | MR | Zbl
[7] F. E. Browder, “On the spectral theory of strongly elliptic differential operators”, Proc. Nat. Acad. Sci. U. S. A., 45 (1959), 1423–1431 | DOI | MR | Zbl
[8] F. E. Browder, “On the spectral theory of elliptic differential operators. I”, Math. Ann., 142 (1961), 22–130 | DOI | MR | Zbl
[9] M. S. Livshits, “On spectral decomposition of linear non-selfadjoint operators”, Amer. Math. Soc. Transl. Ser. 2, 5, Amer. Math. Soc., Providence, RI, 1957, 67–114 | MR | Zbl
[10] B. R. Mukminov, “O razlozhenii po sobstvennym funktsiyam dissipativnykh yader”, Dokl. AN SSSR, 99:4 (1954), 499–502 | MR | Zbl
[11] I. M. Glazman, “O razlozhimosti po sisteme sobstvennykh elementov dissipativnykh operatorov”, UMN, 13:3(81) (1958), 179–181 | MR | Zbl
[12] M. G. Krein, “Criteria for completeness of the system of root vectors of a dissipative operator”, Amer. Math. Soc. Transl. Ser. 2, 26, Amer. Math. Soc., Providence, RI, 1963, 221–229 | MR | Zbl
[13] V. B. Lidskii, “Conditions for completeness of a system of root subspaces for non-selfadjoint operators with discrete spectra”, Amer. Math. Soc. Transl. Ser. 2, 34, Amer. Math. Soc., Providence, RI, 1963, 241–281 | MR | Zbl
[14] V. B. Lidskii, “Summability of series in the principal vectors of non-selfadjoint operators”, Amer. Math. Soc. Transl. Ser. 2, 40, Amer. Math. Soc., Providence, RI, 1964, 193–228 | MR | Zbl
[15] V. B. Lidskii, “O razlozhenii v ryad Fure po glavnym funktsiyam nesamosopryazhennogo ellipticheskogo operatora”, Matem. sb., 57(99):2 (1962), 137–150 | MR | Zbl
[16] A. S. Markus, “A basis of root vectors of a dissipative operator”, Soviet Math. Dokl., 1 (1960), 599–602 | MR | Zbl
[17] A. S. Markus, “Expansion in root vectors of a slightly perturbed self-adjoint operator”, Soviet Math. Dokl., 3 (1962), 104–108 | MR | Zbl
[18] V. I. Matsaev, “On a class of completely continuous operators”, Soviet Math. Dokl., 2 (1961), 972–975 | Zbl
[19] V. I. Matsaev, “Some theorems on the completeness of root subspaces of completely continuous operators”, Soviet Math. Dokl., 5 (1964), 396–399 | Zbl
[20] V. I. Matsaev, “A method for the estimation of the resolvents of non-selfadjoint operators”, Soviet Math. Dokl., 5 (1964), 236–240 | Zbl
[21] S. Agmon, “On the eigenfunctions and on the eigenvalues of general elliptic boundary value problems”, Comm. Pure Appl. Math., 15 (1962), 119–147 | DOI | MR | Zbl
[22] S. Agmon, Lectures on elliptic boundary value problems, Van Nostrand Math. Stud., 2, D. Van Nostrand Co., Inc., Princeton, NJ–Toronto–London, 1965, v+291 pp. | MR | Zbl
[23] V. E. Katsnelson, O skhodimosti i summiruemosti ryadov po kornevym vektoram nekotorykh klassov nesamosopryazhennykh operatorov, Diss. ... kand. fiz.-matem. nauk, Khark. gos. un-t, Kharkov, 1967, 150 pp.
[24] V. È. Katsnel'son, “Conditions under which systems of eigenvectors of some classes of operators form a basis”, Funct. Anal. Appl., 1:2 (1967), 122–132 | DOI | MR | Zbl
[25] I. C. Gohberg, M. G. Krein, Introduction to the theory of linear nonselfadjoint operators, Transl. Math. Monogr., 18, Amer. Math. Soc., Providence, RI, 1969, xv+378 pp. | MR | MR | Zbl | Zbl
[26] P. D. Lax, “A Phragmén–Lindelöf theorem in harmonic analysis and its application to some questions in the theory of elliptic equations”, Comm. Pure Appl. Math., 10 (1957), 361–389 | DOI | MR | Zbl
[27] S. Agmon, L. Nirenberg, “Properties of solutions of ordinary differential equations in Banach space”, Comm. Pure Appl. Math., 16 (1963), 121–239 | DOI | MR | Zbl
[28] A. S. Markus, Introduction to the spectral theory of polynomial operator pencils, Transl. Math. Monogr., 71, Amer. Math. Soc., Providence, RI, 1988, iv+250 pp. | MR | MR | Zbl | Zbl
[29] A. A. Shkalikov, “Elliptic equations in Hilbert space and associated spectral problems”, J. Soviet Math., 51:4 (1990), 2399–2467 | DOI | MR | Zbl
[30] A. S. Markus, V. I. Matsaev, “A theorem on comparison of spectra, and the spectral asymptotics for a Keldysh pencil”, Math. USSR-Sb., 51:2 (1985), 389–404 | DOI | MR | Zbl
[31] A. A. Shkalikov, “Zeto distribution for pairs of holomorphic functions with applications to eigenvalue distribution”, Trans. Amer. Math. Soc., 281:1 (1984), 49–63 | DOI | MR | Zbl
[32] T. Kato, Perturbation theory for linear operators, Grundlehren Math. Wiss., 132, Springer-Verlag New York, Inc., New York, 1966, xix+592 pp. | MR | MR | Zbl | Zbl
[33] M. S. Agranovich, B. Z. Katsenelenbaum, A. N. Sivov, N. N. Voitovich, Generalized method of eigenoscillations in diffraction theory, Wiley-VCH Verlag Berlin GmbH, Berlin, 1999, Chapter 5 | MR | MR | Zbl | Zbl
[34] M. S. Agranovich, “Spectral problems for second-order strongly elliptic systems in smooth and non-smooth domains”, Russian Math. Surveys, 57:5 (2002), 847–920 | DOI | DOI | MR | Zbl
[35] M. S. Agranovich, “Spectral problems in Lipschitz domains”, J. Math. Sci. (N. Y.), 190:1 (2013), 8–33 | DOI | MR | Zbl
[36] G. V. Radzievskii, “The problem of the completeness of root vectors in the spectral theory of operator-valued functions”, Russian Math. Surveys, 37:2 (1982), 91–164 | DOI | MR | Zbl
[37] T. Ya. Azizov, N. D. Kopachevskii, Prilozheniya indefinitnoi metriki, Izd-vo “DIAIPI”, Simferopol, 2014, 276 pp.
[38] V. V. Vlasov, D. A. Medvedev, N. A. Rautian, “Funktsionalno-differentsialnye uravneniya v prostranstvakh Soboleva i ikh spektralnyi analiz”, Sovremennye problemy matematiki i mekhaniki, 8, Izd-vo Mosk. un-ta, M., 2011, 308 pp.
[39] B. S. Mityagin, “Spectral expansions of one-dimensional periodic Dirac operators”, Dyn. Partial Differ. Equ., 1:2 (2004), 125–191 | DOI | MR | Zbl
[40] B. S. Mityagin, “The spectrum of a harmonic oscillator operator perturbed by point interactions”, Internat. J. Theoret. Phys., 54:11 (2015), 4068–4085 | DOI | MR | Zbl
[41] J. Adduci, B. Mityagin, “Eigensystem of an $L^2$-perturbed harmonic oscillator is an unconditional basis”, Cent. Eur. J. Math., 10:2 (2012), 569–589 ; (2010 (v1 – 2009)), 28 pp., arXiv: 0912.2722 | DOI | MR | Zbl
[42] J. Adduci, B. Mityagin, “Root system of a perturbation of a selfadjoint operator with discrete spectrum”, Integral Equations Operator Theory, 73:2 (2012), 153–175 | DOI | MR | Zbl
[43] P. Djakov, B. S. Mityagin, “Instability zones of periodic 1-dimensional Schrödinger and Dirac operators”, Russian Math. Surveys, 61:4 (2006), 663–766 | DOI | DOI | MR | Zbl
[44] P. Djakov, B. Mityagin, “Spectral gaps of Schrödinger operators with periodic singular potentials”, Dyn. Partial Differ. Equ., 6:2 (2009), 95–165 | DOI | MR | Zbl
[45] P. Djakov, B. Mityagin, “Bari–Markus property for Riesz projections of 1D periodic Dirac operators”, Math. Nachr., 283:3 (2010), 443–462 | DOI | MR | Zbl
[46] P. Djakov, B. Mityagin, “Convergence of spectral decompositions of Hill operators with trigonometric polynomial potentials”, Math. Ann., 351:3 (2011), 509–540 | DOI | MR | Zbl
[47] P. Djakov, B. Mityagin, “Equiconvergence of spectral decompositions of 1D Dirac operators with regular boundary conditions”, J. Approx. Theory, 164:7 (2012), 879–927 | DOI | MR | Zbl
[48] P. Djakov, B. Mityagin, “Criteria for existence of Riesz bases consisting of root functions of Hill and 1D Dirac operators”, J. Funct. Anal., 263:8 (2012), 2300–2332 | DOI | MR | Zbl
[49] P. Djakov, B. Mityagin, “Riesz bases consisting of root functions of 1D Dirac operators”, Proc. Amer. Math. Soc., 141:4 (2013), 1361–1375 | DOI | MR | Zbl
[50] B. Mityagin, P. Siegl, “Root system of singular perturbations of the harmonic oscillator type operators”, Lett. Math. Phys., 106:2 (2016), 147–167 ; (2015), 16 pp., arXiv: 1307.6245v2 | DOI | MR | Zbl
[51] A. A. Shkalikov, “On the basis property of root vectors of a perturbed self-adjoint operator”, Proc. Steklov Inst. Math., 269 (2010), 284–298 | DOI | MR | Zbl
[52] A. A. Shkalikov, “Eigenvalue asymptotics of perturbed self-adjoint operators”, Methods Funct. Anal. Topology, 18:1 (2012), 79–89 | MR | Zbl
[53] N. Dunford, J. T. Schwartz, Linear operators. Part III. Spectral operators, Pure Appl. Math., 7, Interscience Publishers [John Wiley Sons, Inc.], New York–London–Sydney, 1971, i–xx and 1925–2592 | MR | Zbl | Zbl
[54] A. S. Markus, V. I. Matsaev, “Operatory, porozhdennye polutoralineinymi formami, i ikh spektralnye asimptotiki”, Lineinye operatory i integralnye uravneniya, Matem. issled., 61, Shtiintsa, Kishinev, 1981, 86–103 | MR | Zbl
[55] M. A. Krasnosel'skii, P. P. Zabreiko, E. I. Pustyl'nik, P. E. Sobolevskii, Integral operators in spaces of summable functions, Monographs and Textbooks on Mechanics of Solids and Fluids, Noordhoff International Publishing, Leiden, 1976, xv+520 pp. | MR | MR | Zbl | Zbl
[56] M. S. Agranovich, A. M. Selitskii, “Fractional powers of operators corresponding to coercive problems in Lipschitz domains”, Funct. Anal. Appl., 47:2 (2013), 83–95 | DOI | DOI | MR | Zbl
[57] F. Riss, B. Sekefalvi-Nad, Lektsii po funktsionalnomu analizu, 2-e izd., Mir, M., 1979, 589 pp. ; F. Riesz, B. Sz.-Nagy, Leçons d'analyse fonctionnelle, 4ème éd., Gauthier-Villars, Paris; Akadémiai Kiadó, Budapest, 1965, viii+490 pp. ; F. Riesz, B. Sz.-Nagy, Functional analysis, Dover Books on Advanced Mathematics, Dover Publications, Inc., New York, 1990, xii+504 СЃ. | MR | MR | Zbl | MR | Zbl
[58] A. S. Markus, V. I. Matsaev, “Comparison theorems for spectra of linear operators, and spectral asymptotics”, Trans. Moscow Math. Soc., 1, Amer. Math. Soc., Providence, RI, 1984, 139–187 | MR | Zbl
[59] H. Triebel, Interpolation theory, function spaces, differential operators, VEB Deutscher Verlag der Wissenschaften, Berlin, 1978, 528 pp. | MR | MR | Zbl | Zbl
[60] M. S. Agranovich, “On series with respect to root vectors of operators associated with forms having symmetric principal part”, Funct. Anal. Appl., 28:3 (1994), 151–167 | DOI | MR | Zbl
[61] M. Sh. Birman, M. Z. Solomyak, “Kolichestvennyi analiz v teoremakh vlozheniya Soboleva i prilozheniya k spektralnoi teorii”, Desyataya matematicheskaya shkola (Katsiveli–Nalchik, 1972), In-t matem. AN Ukr. SSR, Kiev, 1974, 5–189 | MR
[62] M. Sh. Birman, M. Z. Solomyak, “Estimates of singular numbers of integral operators”, Russian Math. Surveys, 32:1 (1977), 15–89 | DOI | MR | Zbl
[63] G. V. Rozenblum, M. A. Shubin, M. Z. Solomyak, “Spectral theory of differential operators”, Partial differential equations VII, Encyclopaedia Math. Sci., 64, Springer, Berlin, 1994, 1–261 | MR | Zbl
[64] H. Weyl, “Inequalities between the two kinds of eigenvalues of a linear transformation”, Proc. Nat. Acad. Sci. U. S. A., 35 (1949), 408–411 | DOI | MR | Zbl
[65] B. Ya. Levin, Lectures on entire functions, Transl. Math. Monogr., 150, Amer. Math. Soc., Providence, RI, 1996, xvi+248 pp. | MR | Zbl
[66] G. D. Birkhoff, “On the asymptotic character of the solutions of certain linear differential equations containing a parameter”, Trans. Amer. Math. Soc., 9:2 (1908), 219–231 | DOI | MR | Zbl
[67] G. D. Birkhoff, “Boundary value and expansion problems of ordinary differential equations”, Trans. Amer. Math. Soc., 9:4 (1908), 373–395 | DOI | MR | Zbl
[68] M. S. Agranovich, M. I. Vishik, “Elliptic problems with a parameter and parabolic problems of general type”, Russian Math. Surveys, 19:3 (1964), 53–157 | DOI | MR | Zbl
[69] M. A. Naimark, Linear differential operators, v. I, II, Frederick Ungar Publishing Co., New York, 1967, 1968, xiii+144 pp., xv+352 pp. | MR | MR | MR | Zbl | Zbl
[70] A. Shkalikov, “Estimates of meromorphic functions and summability theorems”, Pacific J. Math., 103:2 (1982), 569–582 | DOI | MR | Zbl
[71] A. A. Shkalikov, “On estimates of meromorphic functions and summation of series in the root vectors of nonselfadjoint operators”, Soviet Math. Dokl., 27 (1983), 259–263 | MR | Zbl
[72] A. A. Shkalikov, “Theorems of Tauberian type on the distribution of zeros of holomorphic functions”, Math. USSR-Sb., 51:2 (1985), 315–344 | DOI | MR | Zbl
[73] A. S. Markus, V. I. Matsaev, “O skhodimosti razlozhenii po sobstvennym vektoram operatora, blizkogo k samosopryazhennomu”, Lineinye operatory i integralnye uravneniya, Matem. issled., 61, Shtiintsa, Kishinev, 1981, 104–129 | MR | Zbl
[74] M. S. Agranovich, “On the convergence of series in the root vectors of almost selfadjoint operators”, Trans. Mosc. Math. Soc., 1982, No 1, Amer. Math. Soc., Providence, RI, 1982, 167–182 | MR | Zbl
[75] J. B. Garnett, Bounded analytic functions, Pure Appl. Math., 96, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York–London, 1981, xvi+467 pp. | MR | MR | Zbl | Zbl
[76] B. S. Mityagin, P. Siegl, Local form-subordination condition and Riesz basisness of root systems, 2016, 28 pp., arXiv: 1608.00224
[77] G. H. Hardy, J. E. Littlewood, G. Pólya, Inequalities, Univ. Press, Cambridge, 1934, xii+314 pp. | MR | MR | Zbl
[78] N. Dunford, “A survey of the theory of spectral operators”, Bull. Amer. Math. Soc., 64:5 (1958), 217–274 | DOI | MR | Zbl
[79] V. P. Mikhailov, “Riesz bases in $\mathscr L_2[0,1]$”, Soviet Math. Dokl., 3 (1962), 851–855 | MR | Zbl
[80] G. M. Keselman, “O bezuslovnoi skhodimosti razlozhenii po sobstvennym funktsiyam nekotorykh differentsialnykh operatorov”, Izv. vuzov. Matem., 1964, no. 2, 82–93 | MR | Zbl
[81] A. A. Shkalikov, “On the basis problem of the eigenfunctions of an ordinary differential operator”, Russian Math. Surveys, 34:5 (1979), 249–250 | DOI | MR | Zbl
[82] A. A. Shkalikov, “The basis problem of the eigenfunctions of ordinary differential operators with integral boundary conditions”, Moscow Univ. Math. Bull., 37:6 (1982), 10–20 | MR | Zbl
[83] A. A. Shkalikov, “Boundary problems for ordinary differential equations with parameter in the boundary conditions”, J. Soviet Math., 33 (1986), 1311–1342 | DOI | MR | Zbl
[84] A. M. Savchuk, A. A. Shkalikov, “Sturm–Liouville operators with distribution potentials”, Trans. Moscow Math. Soc., 2003, 2003, 143–192 | MR | Zbl
[85] A. M. Savchuk, A. A. Shkalikov, “The Dirac operator with complex valued summable potential”, Math. Notes, 95:5 (2014), 777–810 | DOI | MR | Zbl
[86] A. A. Lunyov, M. M. Malamud, “On the Riesz basis property of the root vector system for Dirac-type $2\times 2$ systems”, Dokl. Math., 90:2 (2014), 556–561 | DOI | Zbl
[87] A. A. Lunyov, M. M. Malamud, “On the Riesz basis property of root vectors system for $2 \times 2$ Dirac type operators”, J. Math. Anal. Appl., 441:1 (2016), 57–103 | DOI | MR | Zbl
[88] I. V. Sadovnichaya, “Equiconvergence of spectral decompositions for the Dirac system with potential in Lebesgue spaces”, Proc. Steklov Inst. Math., 293 (2016), 288–316 | DOI | DOI
[89] I. V. Sadovnichaya, “$L_\mu\to L_\nu$ ravnoskhodimost spektralnykh razlozhenii dlya sistemy Diraka s $L_\varkappa$ potentsialom”, 2015, 6 pp., arXiv: 1512.02021