Perturbations of self-adjoint and normal operators with discrete spectrum
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 71 (2016) no. 5, pp. 907-964 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The spectral properties of operators of the form $A=T+B$ are analyzed, where $B$ is a non-symmetric operator subordinate to a self-adjoint or normal operator $T$. The different definitions of perturbations with respect to $T$ are considered: completely subordinated, subordinate with order $p1$, locally subordinate. Analogues of these types of perturbations are considered also for operators defined in terms of quadratic forms. For perturbations of different types, series of statements on the completeness property of the root vectors of the operator and on the basis or unconditional basis property are proved. The spectra of the operators $T$ and $T+B$ are compared as well. A survey of research in this area is presented. Bibliography: 89 titles.
Keywords: perturbations of linear operators, resolvent estimates, conditions for local subordination, sums of the quadratic forms of operators, unconditional bases, Riesz bases, Abel–Lidskii summability method.
Mots-clés : conditions for $p$-subordination
@article{RM_2016_71_5_a1,
     author = {A. A. Shkalikov},
     title = {Perturbations of self-adjoint and normal operators with discrete spectrum},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {907--964},
     year = {2016},
     volume = {71},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2016_71_5_a1/}
}
TY  - JOUR
AU  - A. A. Shkalikov
TI  - Perturbations of self-adjoint and normal operators with discrete spectrum
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2016
SP  - 907
EP  - 964
VL  - 71
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/RM_2016_71_5_a1/
LA  - en
ID  - RM_2016_71_5_a1
ER  - 
%0 Journal Article
%A A. A. Shkalikov
%T Perturbations of self-adjoint and normal operators with discrete spectrum
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2016
%P 907-964
%V 71
%N 5
%U http://geodesic.mathdoc.fr/item/RM_2016_71_5_a1/
%G en
%F RM_2016_71_5_a1
A. A. Shkalikov. Perturbations of self-adjoint and normal operators with discrete spectrum. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 71 (2016) no. 5, pp. 907-964. http://geodesic.mathdoc.fr/item/RM_2016_71_5_a1/

[1] M. V. Keldysh, “O sobstvennykh znacheniyakh i sobstvennykh funktsiyakh nekotorykh klassov nesamosopryazhennykh uravnenii”, Dokl. AN SSSR, 77:1 (1951), 11–14 | MR | Zbl

[2] M. V. Keldysh, “On a Tauberian theorem”, Amer. Math. Soc. Transl. Ser. 2, 102, Amer. Math. Soc., Providence, RI, 1973, 133–143 | MR | Zbl

[3] M. V. Keldysh, “On the completeness of the eigenfunctions of some classes of non-selfadjoint linear operators”, Russian Math. Surveys, 26:4 (1971), 15–44 | DOI | MR | Zbl

[4] Ya. D. Tamarkin, O nekotorykh obschikh zadachakh teorii obyknovennykh lineinykh differentsialnykh uravnenii i o razlozhenii proizvolnykh funktsii v ryady, Tip. M. P. Frolovoi, Petrograd, 1917, xiv+308 pp. | Zbl

[5] T. Carleman, “Über die asymptotische Verteilung der Eigenwerte partieller Differentialgleichungen”, Ber. Verh. Sächs. Akad. Leipzig, 88 (1936), 119–132 | Zbl

[6] F. E. Browder, “On the eigenfunctions and eigenvalues of the general linear elliptic differential operator”, Proc. Nat. Acad. Sci. U. S. A., 39 (1953), 433–439 | DOI | MR | Zbl

[7] F. E. Browder, “On the spectral theory of strongly elliptic differential operators”, Proc. Nat. Acad. Sci. U. S. A., 45 (1959), 1423–1431 | DOI | MR | Zbl

[8] F. E. Browder, “On the spectral theory of elliptic differential operators. I”, Math. Ann., 142 (1961), 22–130 | DOI | MR | Zbl

[9] M. S. Livshits, “On spectral decomposition of linear non-selfadjoint operators”, Amer. Math. Soc. Transl. Ser. 2, 5, Amer. Math. Soc., Providence, RI, 1957, 67–114 | MR | Zbl

[10] B. R. Mukminov, “O razlozhenii po sobstvennym funktsiyam dissipativnykh yader”, Dokl. AN SSSR, 99:4 (1954), 499–502 | MR | Zbl

[11] I. M. Glazman, “O razlozhimosti po sisteme sobstvennykh elementov dissipativnykh operatorov”, UMN, 13:3(81) (1958), 179–181 | MR | Zbl

[12] M. G. Krein, “Criteria for completeness of the system of root vectors of a dissipative operator”, Amer. Math. Soc. Transl. Ser. 2, 26, Amer. Math. Soc., Providence, RI, 1963, 221–229 | MR | Zbl

[13] V. B. Lidskii, “Conditions for completeness of a system of root subspaces for non-selfadjoint operators with discrete spectra”, Amer. Math. Soc. Transl. Ser. 2, 34, Amer. Math. Soc., Providence, RI, 1963, 241–281 | MR | Zbl

[14] V. B. Lidskii, “Summability of series in the principal vectors of non-selfadjoint operators”, Amer. Math. Soc. Transl. Ser. 2, 40, Amer. Math. Soc., Providence, RI, 1964, 193–228 | MR | Zbl

[15] V. B. Lidskii, “O razlozhenii v ryad Fure po glavnym funktsiyam nesamosopryazhennogo ellipticheskogo operatora”, Matem. sb., 57(99):2 (1962), 137–150 | MR | Zbl

[16] A. S. Markus, “A basis of root vectors of a dissipative operator”, Soviet Math. Dokl., 1 (1960), 599–602 | MR | Zbl

[17] A. S. Markus, “Expansion in root vectors of a slightly perturbed self-adjoint operator”, Soviet Math. Dokl., 3 (1962), 104–108 | MR | Zbl

[18] V. I. Matsaev, “On a class of completely continuous operators”, Soviet Math. Dokl., 2 (1961), 972–975 | Zbl

[19] V. I. Matsaev, “Some theorems on the completeness of root subspaces of completely continuous operators”, Soviet Math. Dokl., 5 (1964), 396–399 | Zbl

[20] V. I. Matsaev, “A method for the estimation of the resolvents of non-selfadjoint operators”, Soviet Math. Dokl., 5 (1964), 236–240 | Zbl

[21] S. Agmon, “On the eigenfunctions and on the eigenvalues of general elliptic boundary value problems”, Comm. Pure Appl. Math., 15 (1962), 119–147 | DOI | MR | Zbl

[22] S. Agmon, Lectures on elliptic boundary value problems, Van Nostrand Math. Stud., 2, D. Van Nostrand Co., Inc., Princeton, NJ–Toronto–London, 1965, v+291 pp. | MR | Zbl

[23] V. E. Katsnelson, O skhodimosti i summiruemosti ryadov po kornevym vektoram nekotorykh klassov nesamosopryazhennykh operatorov, Diss. ... kand. fiz.-matem. nauk, Khark. gos. un-t, Kharkov, 1967, 150 pp.

[24] V. È. Katsnel'son, “Conditions under which systems of eigenvectors of some classes of operators form a basis”, Funct. Anal. Appl., 1:2 (1967), 122–132 | DOI | MR | Zbl

[25] I. C. Gohberg, M. G. Krein, Introduction to the theory of linear nonselfadjoint operators, Transl. Math. Monogr., 18, Amer. Math. Soc., Providence, RI, 1969, xv+378 pp. | MR | MR | Zbl | Zbl

[26] P. D. Lax, “A Phragmén–Lindelöf theorem in harmonic analysis and its application to some questions in the theory of elliptic equations”, Comm. Pure Appl. Math., 10 (1957), 361–389 | DOI | MR | Zbl

[27] S. Agmon, L. Nirenberg, “Properties of solutions of ordinary differential equations in Banach space”, Comm. Pure Appl. Math., 16 (1963), 121–239 | DOI | MR | Zbl

[28] A. S. Markus, Introduction to the spectral theory of polynomial operator pencils, Transl. Math. Monogr., 71, Amer. Math. Soc., Providence, RI, 1988, iv+250 pp. | MR | MR | Zbl | Zbl

[29] A. A. Shkalikov, “Elliptic equations in Hilbert space and associated spectral problems”, J. Soviet Math., 51:4 (1990), 2399–2467 | DOI | MR | Zbl

[30] A. S. Markus, V. I. Matsaev, “A theorem on comparison of spectra, and the spectral asymptotics for a Keldysh pencil”, Math. USSR-Sb., 51:2 (1985), 389–404 | DOI | MR | Zbl

[31] A. A. Shkalikov, “Zeto distribution for pairs of holomorphic functions with applications to eigenvalue distribution”, Trans. Amer. Math. Soc., 281:1 (1984), 49–63 | DOI | MR | Zbl

[32] T. Kato, Perturbation theory for linear operators, Grundlehren Math. Wiss., 132, Springer-Verlag New York, Inc., New York, 1966, xix+592 pp. | MR | MR | Zbl | Zbl

[33] M. S. Agranovich, B. Z. Katsenelenbaum, A. N. Sivov, N. N. Voitovich, Generalized method of eigenoscillations in diffraction theory, Wiley-VCH Verlag Berlin GmbH, Berlin, 1999, Chapter 5 | MR | MR | Zbl | Zbl

[34] M. S. Agranovich, “Spectral problems for second-order strongly elliptic systems in smooth and non-smooth domains”, Russian Math. Surveys, 57:5 (2002), 847–920 | DOI | DOI | MR | Zbl

[35] M. S. Agranovich, “Spectral problems in Lipschitz domains”, J. Math. Sci. (N. Y.), 190:1 (2013), 8–33 | DOI | MR | Zbl

[36] G. V. Radzievskii, “The problem of the completeness of root vectors in the spectral theory of operator-valued functions”, Russian Math. Surveys, 37:2 (1982), 91–164 | DOI | MR | Zbl

[37] T. Ya. Azizov, N. D. Kopachevskii, Prilozheniya indefinitnoi metriki, Izd-vo “DIAIPI”, Simferopol, 2014, 276 pp.

[38] V. V. Vlasov, D. A. Medvedev, N. A. Rautian, “Funktsionalno-differentsialnye uravneniya v prostranstvakh Soboleva i ikh spektralnyi analiz”, Sovremennye problemy matematiki i mekhaniki, 8, Izd-vo Mosk. un-ta, M., 2011, 308 pp.

[39] B. S. Mityagin, “Spectral expansions of one-dimensional periodic Dirac operators”, Dyn. Partial Differ. Equ., 1:2 (2004), 125–191 | DOI | MR | Zbl

[40] B. S. Mityagin, “The spectrum of a harmonic oscillator operator perturbed by point interactions”, Internat. J. Theoret. Phys., 54:11 (2015), 4068–4085 | DOI | MR | Zbl

[41] J. Adduci, B. Mityagin, “Eigensystem of an $L^2$-perturbed harmonic oscillator is an unconditional basis”, Cent. Eur. J. Math., 10:2 (2012), 569–589 ; (2010 (v1 – 2009)), 28 pp., arXiv: 0912.2722 | DOI | MR | Zbl

[42] J. Adduci, B. Mityagin, “Root system of a perturbation of a selfadjoint operator with discrete spectrum”, Integral Equations Operator Theory, 73:2 (2012), 153–175 | DOI | MR | Zbl

[43] P. Djakov, B. S. Mityagin, “Instability zones of periodic 1-dimensional Schrödinger and Dirac operators”, Russian Math. Surveys, 61:4 (2006), 663–766 | DOI | DOI | MR | Zbl

[44] P. Djakov, B. Mityagin, “Spectral gaps of Schrödinger operators with periodic singular potentials”, Dyn. Partial Differ. Equ., 6:2 (2009), 95–165 | DOI | MR | Zbl

[45] P. Djakov, B. Mityagin, “Bari–Markus property for Riesz projections of 1D periodic Dirac operators”, Math. Nachr., 283:3 (2010), 443–462 | DOI | MR | Zbl

[46] P. Djakov, B. Mityagin, “Convergence of spectral decompositions of Hill operators with trigonometric polynomial potentials”, Math. Ann., 351:3 (2011), 509–540 | DOI | MR | Zbl

[47] P. Djakov, B. Mityagin, “Equiconvergence of spectral decompositions of 1D Dirac operators with regular boundary conditions”, J. Approx. Theory, 164:7 (2012), 879–927 | DOI | MR | Zbl

[48] P. Djakov, B. Mityagin, “Criteria for existence of Riesz bases consisting of root functions of Hill and 1D Dirac operators”, J. Funct. Anal., 263:8 (2012), 2300–2332 | DOI | MR | Zbl

[49] P. Djakov, B. Mityagin, “Riesz bases consisting of root functions of 1D Dirac operators”, Proc. Amer. Math. Soc., 141:4 (2013), 1361–1375 | DOI | MR | Zbl

[50] B. Mityagin, P. Siegl, “Root system of singular perturbations of the harmonic oscillator type operators”, Lett. Math. Phys., 106:2 (2016), 147–167 ; (2015), 16 pp., arXiv: 1307.6245v2 | DOI | MR | Zbl

[51] A. A. Shkalikov, “On the basis property of root vectors of a perturbed self-adjoint operator”, Proc. Steklov Inst. Math., 269 (2010), 284–298 | DOI | MR | Zbl

[52] A. A. Shkalikov, “Eigenvalue asymptotics of perturbed self-adjoint operators”, Methods Funct. Anal. Topology, 18:1 (2012), 79–89 | MR | Zbl

[53] N. Dunford, J. T. Schwartz, Linear operators. Part III. Spectral operators, Pure Appl. Math., 7, Interscience Publishers [John Wiley Sons, Inc.], New York–London–Sydney, 1971, i–xx and 1925–2592 | MR | Zbl | Zbl

[54] A. S. Markus, V. I. Matsaev, “Operatory, porozhdennye polutoralineinymi formami, i ikh spektralnye asimptotiki”, Lineinye operatory i integralnye uravneniya, Matem. issled., 61, Shtiintsa, Kishinev, 1981, 86–103 | MR | Zbl

[55] M. A. Krasnosel'skii, P. P. Zabreiko, E. I. Pustyl'nik, P. E. Sobolevskii, Integral operators in spaces of summable functions, Monographs and Textbooks on Mechanics of Solids and Fluids, Noordhoff International Publishing, Leiden, 1976, xv+520 pp. | MR | MR | Zbl | Zbl

[56] M. S. Agranovich, A. M. Selitskii, “Fractional powers of operators corresponding to coercive problems in Lipschitz domains”, Funct. Anal. Appl., 47:2 (2013), 83–95 | DOI | DOI | MR | Zbl

[57] F. Riss, B. Sekefalvi-Nad, Lektsii po funktsionalnomu analizu, 2-e izd., Mir, M., 1979, 589 pp. ; F. Riesz, B. Sz.-Nagy, Leçons d'analyse fonctionnelle, 4ème éd., Gauthier-Villars, Paris; Akadémiai Kiadó, Budapest, 1965, viii+490 pp. ; F. Riesz, B. Sz.-Nagy, Functional analysis, Dover Books on Advanced Mathematics, Dover Publications, Inc., New York, 1990, xii+504 СЃ. | MR | MR | Zbl | MR | Zbl

[58] A. S. Markus, V. I. Matsaev, “Comparison theorems for spectra of linear operators, and spectral asymptotics”, Trans. Moscow Math. Soc., 1, Amer. Math. Soc., Providence, RI, 1984, 139–187 | MR | Zbl

[59] H. Triebel, Interpolation theory, function spaces, differential operators, VEB Deutscher Verlag der Wissenschaften, Berlin, 1978, 528 pp. | MR | MR | Zbl | Zbl

[60] M. S. Agranovich, “On series with respect to root vectors of operators associated with forms having symmetric principal part”, Funct. Anal. Appl., 28:3 (1994), 151–167 | DOI | MR | Zbl

[61] M. Sh. Birman, M. Z. Solomyak, “Kolichestvennyi analiz v teoremakh vlozheniya Soboleva i prilozheniya k spektralnoi teorii”, Desyataya matematicheskaya shkola (Katsiveli–Nalchik, 1972), In-t matem. AN Ukr. SSR, Kiev, 1974, 5–189 | MR

[62] M. Sh. Birman, M. Z. Solomyak, “Estimates of singular numbers of integral operators”, Russian Math. Surveys, 32:1 (1977), 15–89 | DOI | MR | Zbl

[63] G. V. Rozenblum, M. A. Shubin, M. Z. Solomyak, “Spectral theory of differential operators”, Partial differential equations VII, Encyclopaedia Math. Sci., 64, Springer, Berlin, 1994, 1–261 | MR | Zbl

[64] H. Weyl, “Inequalities between the two kinds of eigenvalues of a linear transformation”, Proc. Nat. Acad. Sci. U. S. A., 35 (1949), 408–411 | DOI | MR | Zbl

[65] B. Ya. Levin, Lectures on entire functions, Transl. Math. Monogr., 150, Amer. Math. Soc., Providence, RI, 1996, xvi+248 pp. | MR | Zbl

[66] G. D. Birkhoff, “On the asymptotic character of the solutions of certain linear differential equations containing a parameter”, Trans. Amer. Math. Soc., 9:2 (1908), 219–231 | DOI | MR | Zbl

[67] G. D. Birkhoff, “Boundary value and expansion problems of ordinary differential equations”, Trans. Amer. Math. Soc., 9:4 (1908), 373–395 | DOI | MR | Zbl

[68] M. S. Agranovich, M. I. Vishik, “Elliptic problems with a parameter and parabolic problems of general type”, Russian Math. Surveys, 19:3 (1964), 53–157 | DOI | MR | Zbl

[69] M. A. Naimark, Linear differential operators, v. I, II, Frederick Ungar Publishing Co., New York, 1967, 1968, xiii+144 pp., xv+352 pp. | MR | MR | MR | Zbl | Zbl

[70] A. Shkalikov, “Estimates of meromorphic functions and summability theorems”, Pacific J. Math., 103:2 (1982), 569–582 | DOI | MR | Zbl

[71] A. A. Shkalikov, “On estimates of meromorphic functions and summation of series in the root vectors of nonselfadjoint operators”, Soviet Math. Dokl., 27 (1983), 259–263 | MR | Zbl

[72] A. A. Shkalikov, “Theorems of Tauberian type on the distribution of zeros of holomorphic functions”, Math. USSR-Sb., 51:2 (1985), 315–344 | DOI | MR | Zbl

[73] A. S. Markus, V. I. Matsaev, “O skhodimosti razlozhenii po sobstvennym vektoram operatora, blizkogo k samosopryazhennomu”, Lineinye operatory i integralnye uravneniya, Matem. issled., 61, Shtiintsa, Kishinev, 1981, 104–129 | MR | Zbl

[74] M. S. Agranovich, “On the convergence of series in the root vectors of almost selfadjoint operators”, Trans. Mosc. Math. Soc., 1982, No 1, Amer. Math. Soc., Providence, RI, 1982, 167–182 | MR | Zbl

[75] J. B. Garnett, Bounded analytic functions, Pure Appl. Math., 96, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York–London, 1981, xvi+467 pp. | MR | MR | Zbl | Zbl

[76] B. S. Mityagin, P. Siegl, Local form-subordination condition and Riesz basisness of root systems, 2016, 28 pp., arXiv: 1608.00224

[77] G. H. Hardy, J. E. Littlewood, G. Pólya, Inequalities, Univ. Press, Cambridge, 1934, xii+314 pp. | MR | MR | Zbl

[78] N. Dunford, “A survey of the theory of spectral operators”, Bull. Amer. Math. Soc., 64:5 (1958), 217–274 | DOI | MR | Zbl

[79] V. P. Mikhailov, “Riesz bases in $\mathscr L_2[0,1]$”, Soviet Math. Dokl., 3 (1962), 851–855 | MR | Zbl

[80] G. M. Keselman, “O bezuslovnoi skhodimosti razlozhenii po sobstvennym funktsiyam nekotorykh differentsialnykh operatorov”, Izv. vuzov. Matem., 1964, no. 2, 82–93 | MR | Zbl

[81] A. A. Shkalikov, “On the basis problem of the eigenfunctions of an ordinary differential operator”, Russian Math. Surveys, 34:5 (1979), 249–250 | DOI | MR | Zbl

[82] A. A. Shkalikov, “The basis problem of the eigenfunctions of ordinary differential operators with integral boundary conditions”, Moscow Univ. Math. Bull., 37:6 (1982), 10–20 | MR | Zbl

[83] A. A. Shkalikov, “Boundary problems for ordinary differential equations with parameter in the boundary conditions”, J. Soviet Math., 33 (1986), 1311–1342 | DOI | MR | Zbl

[84] A. M. Savchuk, A. A. Shkalikov, “Sturm–Liouville operators with distribution potentials”, Trans. Moscow Math. Soc., 2003, 2003, 143–192 | MR | Zbl

[85] A. M. Savchuk, A. A. Shkalikov, “The Dirac operator with complex valued summable potential”, Math. Notes, 95:5 (2014), 777–810 | DOI | MR | Zbl

[86] A. A. Lunyov, M. M. Malamud, “On the Riesz basis property of the root vector system for Dirac-type $2\times 2$ systems”, Dokl. Math., 90:2 (2014), 556–561 | DOI | Zbl

[87] A. A. Lunyov, M. M. Malamud, “On the Riesz basis property of root vectors system for $2 \times 2$ Dirac type operators”, J. Math. Anal. Appl., 441:1 (2016), 57–103 | DOI | MR | Zbl

[88] I. V. Sadovnichaya, “Equiconvergence of spectral decompositions for the Dirac system with potential in Lebesgue spaces”, Proc. Steklov Inst. Math., 293 (2016), 288–316 | DOI | DOI

[89] I. V. Sadovnichaya, “$L_\mu\to L_\nu$ ravnoskhodimost spektralnykh razlozhenii dlya sistemy Diraka s $L_\varkappa$ potentsialom”, 2015, 6 pp., arXiv: 1512.02021