@article{RM_2016_71_5_a0,
author = {A. L. Skubachevskii},
title = {Boundary-value problems for elliptic functional-differential equations and their applications},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {801--906},
year = {2016},
volume = {71},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2016_71_5_a0/}
}
TY - JOUR AU - A. L. Skubachevskii TI - Boundary-value problems for elliptic functional-differential equations and their applications JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2016 SP - 801 EP - 906 VL - 71 IS - 5 UR - http://geodesic.mathdoc.fr/item/RM_2016_71_5_a0/ LA - en ID - RM_2016_71_5_a0 ER -
%0 Journal Article %A A. L. Skubachevskii %T Boundary-value problems for elliptic functional-differential equations and their applications %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2016 %P 801-906 %V 71 %N 5 %U http://geodesic.mathdoc.fr/item/RM_2016_71_5_a0/ %G en %F RM_2016_71_5_a0
A. L. Skubachevskii. Boundary-value problems for elliptic functional-differential equations and their applications. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 71 (2016) no. 5, pp. 801-906. http://geodesic.mathdoc.fr/item/RM_2016_71_5_a0/
[1] M. S. Agranovich, “Nonself-adjoint elliptic operators on nonsmooth domains”, Russian J. Math. Phys., 2:2 (1994), 139–148 | MR | Zbl
[2] M. S. Agranovich, A. M. Selitskii, “Fractional powers of operators corresponding to coercive problems in Lipschitz domains”, Funct. Anal. Appl., 47:2 (2013), 83–95 | DOI | DOI | MR | Zbl
[3] V. A. Ambartsumyan, “K teorii fluktuatsii yarkosti v Mlechnom puti”, Dokl. AN SSSR, 44:6 (1944), 244–247 | MR
[4] A. B. Antonevich, “On the index of a pseudodifferential operator with a finite group of shifts”, Soviet Math. Dokl., 11 (1970), 168–170 | Zbl
[5] A. B. Antonevich, “Elliptic pseudodifferential operators with a finite group of shifts”, Math. USSR-Izv., 7:3 (1973), 661–673 | DOI | MR | Zbl
[6] A. B. Antonevich, “A class of pseudodifferential operators with deviating arguments on a torus”, Differential Equations, 11 (1975), 1155–1160 | MR | Zbl
[7] A. B. Antonevich, “Operators with a shift generated by the action of a compact Lie group”, Sib. Math. J., 20:3 (1979), 329–337 | DOI | MR | Zbl
[8] A. B. Antonevich, A. V. Lebedev, “Noether property of a functional-partial differential operator containing a linear transformation of the argument”, Differential Equations, 18 (1982), 697–704 | MR | Zbl
[9] W. Arendt, “Semigroups and evolution equations: functional calculus, reqularity and kernel estimates”, Evolutionary equations, v. 1, Handb. Differ. Equ., North-Holland, Amsterdam, 2004, 1–85 | MR | Zbl
[10] V. Arnol'd, Chapitres supplémentaires de la théorie des équations différentielles ordinaires, Mir, M., 1980, 324 pp. | MR | MR | Zbl | Zbl
[11] P. Auscher, S. Hofmann, A. McIntosch, P. Tchamitchian, “The Kato square root problem for higher order elliptic operators and systems on $\mathbb{R}^n$”, J. Evol. Equ., 1:4 (2001), 361–385 | DOI | MR | Zbl
[12] P. Auscher, P. Tchamitchian, “Square roots of elliptic second order divergence operators on strongly Lipschitz domains: $L^2$ theory”, J. Anal. Math., 90 (2003), 1–12 | DOI | MR | Zbl
[13] A. Axelsson, S. Keith, A. McIntosch, “The Kato square root problem for mixed boundary value problems”, J. London Math. Soc. (2), 74:1 (2006), 113–130 | DOI | MR | Zbl
[14] E. P. Belan, “On the interaction of traveling waves in a parabolic functional-differential equation”, Differential Equations, 40:5 (2004), 692–702 | DOI | MR | Zbl
[15] E. P. Belan, O. B. Lykova, “Rotating structures in a parabolic functional-differential equation”, Differential Equations, 40:10 (2004), 1419–1430 | DOI | MR | Zbl
[16] M. Sh. Birman, M. Z. Solomyak, “Spectral asymptotics of nonsmooth elliptic operators. I”, Trans. Moscow Math. Soc., 27, Amer. Math. Soc., Providence, RI, 1975, 1–52 | MR | Zbl
[17] A. V. Bitsadze, A. A. Samarskii, “On some simple generalizations of linear elliptic boundary problems”, Soviet Math. Dokl., 10 (1969), 398–400 | MR | Zbl
[18] K. Cooke, L. E. Rossovskii, A. L. Skubachevskii, “A boundary value problem for a functional-differential equation with a linearly transformed argument”, Differential Equations, 31:8 (1995), 1294–1299 | MR | Zbl
[19] G. Derfel, A. Iserles, “The pantograth equation in the complex plane”, J. Math. Anal. Appl., 213:1 (1997), 117–132 | DOI | MR | Zbl
[20] N. Dunford, J. T. Schwartz, Linear operators, v. II, Spectral theory. Self adjoint operators in Hilbert space, Interscience Publishers John Wiley Sons, New York–London, 1963, ix+859–1923+7 pp. | MR | MR | Zbl | Zbl
[21] S. P. Novikov, I. A. Dynnikov, “Discrete spectral symmetries of low-dimensional differential operators and difference operators on regular lattices and two-dimensional manifolds”, Russian Math. Surveys, 52:5 (1997), 1057–1116 | DOI | DOI | MR | Zbl
[22] A. F. M. ter Elst, D. W. Robinson, “On Kato's square root problem”, Hokkaido Math. J., 26:2 (1997), 365–376 | DOI | MR | Zbl
[23] W. Feller, “The parabolic differential equations and the associated semi-groups of transformations”, Ann. of Math. (2), 55:3 (1952), 468–519 | DOI | MR | Zbl
[24] L. S. Frank, “Factorization for difference operators”, J. Math. Anal. Appl., 62:1 (1978), 170–185 | DOI | MR | Zbl
[25] L. Gårding, “Dirichlet's problem for linear elliptic partial differential equations”, Math. Scand., 1 (1953), 55–72 | MR | Zbl
[26] I. C. Gohberg, M. G. Krein, Introduction to the theory of linear nonselfadjoint operators, Transl. Math. Monogr., 18, Amer. Math. Soc., Providence, RI, 1969, xv+378 pp. | MR | MR | Zbl | Zbl
[27] O. V. Guseva, “O kraevykh zadachakh dlya silno ellipticheskikh sistem”, Dokl. AN SSSR, 102:6 (1955), 1069–1072 | MR | Zbl
[28] A. J. Hall, G. C. Wake, “A functional differential equation arising in modelling of cell growth”, J. Austral. Math. Soc. Ser. B, 30:4 (1989), 424–435 | DOI | MR | Zbl
[29] P. Hartman, G. Stampacchia, “On some non-linear elliptic differential-functional equations”, Acta. Math., 115 (1966), 271–310 | DOI | MR | Zbl
[30] A. Iserles, “On the generalized pantograph functional-differential equation”, European J. Appl. Math., 4:1 (1993), 1–38 | DOI | MR | Zbl
[31] A. Iserles, Y. Liu, “On neutral functional-differential equations with proportional delays”, J. Math. Anal. Appl., 207:1 (1997), 73–95 | DOI | MR | Zbl
[32] A. G. Kamenskii, “Boundary-value problems for equations with formally symmetric differential-difference operators”, Differential Equations, 12 (1977), 569–576 | MR | Zbl
[33] G. A. Kamenskii, “Variational and boundary-value problems with deviating argument”, Differential Equations, 6 (1973), 1026–1032 | MR | Zbl
[34] G. A. Kamenskii, “On extrema of functionals with deviating argument”, Soviet Math. Dokl., 16 (1975), 1380–1383 | Zbl
[35] G. A. Kamenskii, “On a conditional extremum of a functional with deviating argument”, Soviet Math. Dokl., 18 (1978), 921–924 | MR | Zbl
[36] G. A. Kamenskii, Extrema of nonlocal functionals and boundary value problems for functional differential equations, Nova Science Publishers, Inc., New York, 2007, x+225 pp. | MR | Zbl
[37] G. A. Kamenskii, A. D. Myshkis, “Formulation of boundary-value problems for differential equations with deviating arguments containing several highest-order terms”, Differential Equations, 10 (1975), 302–309 | MR | Zbl
[38] G. A. Kamenskii, A. D. Myshkis, A. L. Skubachevskii, “Minimum value of a quadratic functional and linear elliptic boundary-value problems with deviating arguments”, Differential Equations, 16 (1981), 945–948 | MR | Zbl
[39] T. Kato, “Fractional powers of dissipative operators”, J. Math. Soc. Japan, 13:3 (1961), 246–274 | DOI | MR | Zbl
[40] T. Kato, “Fractional powers of dissipative operators. II”, J. Math. Soc. Japan, 14:2 (1962), 242–248 | DOI | MR | Zbl
[41] T. Kato, Perturbation theory for linear operators, Grundlehren Math. Wiss., 132, Springer-Verlag, New York, 1966, xix+592 pp. | MR | MR | Zbl | Zbl
[42] T. Kato, J. B. McLeod, “Functional-differential equation $y'(x)=ay(\lambda x)+by(x)$”, Bull. Amer. Math. Soc., 77:6 (1971), 891–937 | DOI | MR | Zbl
[43] A. M. Krall, “The development of general differential and general differential-boundary systems”, Rocky Mountain J. Math., 5:4 (1975), 493–542 | DOI | MR | Zbl
[44] O. A. Ladyzhenskaya, N. N. Ural'tseva, Linear and quasilinear elliptic equations, Academic Press, New York–London, 1968, xviii+495 pp. | MR | MR | Zbl | Zbl
[45] V. B. Lidskii, “Summability of series in the principal vectors of non-selfadjoint operators”, Amer. Math. Soc. Transl. Ser. 2, 40, Amer. Math. Soc., Providence, RI, 1964, 193–228 | MR | Zbl
[46] J. L. Lions, “Espaces d'interpolation et domaines de puissances fractionnaires d'opérateurs”, J. Math. Soc. Japan, 14:2 (1962), 233–241 | DOI | MR | Zbl
[47] J.-L. Lions, E. Magenes, Problèmes aux limites non homogènes et applications, v. 1, Travaux et Recherches Mathématiques, 17, Dunod, Paris, 1968, xx+372 pp. | MR | MR | Zbl | Zbl
[48] A. McIntosh, “On the comparability of $A^{1/2}$ and $A^{*1/2}$”, Proc. Amer. Math. Soc., 32:2 (1972), 430–434 | DOI | MR | Zbl
[49] V. P. Mikhaĭlov, Partial differential equations, Mir, M.; distributed by Imported Publications, Inc., 1978, 397 pp. | MR | MR | Zbl | Zbl
[50] S. G. Mikhlin, The problem of the minimum of a quadratic functional, Holden-Day Series in Mathematical Physics, Holden-Day, Inc., San Francisco, CA–London–Amsterdam, 1965, ix+155 pp. | MR | MR | Zbl
[51] A. B. Muravnik, “Uniqueness of the solution of the Cauchy problem for some differential-difference parabolic equations”, Differential Equations, 40:10 (2004), 1461–1466 | DOI | MR | Zbl
[52] A. B. Muravnik, “On the asymptotics of the solution of the Cauchy problem for some differential-difference parabolic equations”, Differential Equations, 41:4 (2005), 570–581 | DOI | MR | Zbl
[53] A. B. Muravnik, “On the Cauchy problem for parabolic equations with nonlocal high-order terms”, Dokl. Math., 71:3 (2005), 383–385 | MR | Zbl
[54] A. B. Muravnik, “Functional differential parabolic equations: integral transformations and qualitative properties of solutions of the Cauchy problem”, J. Math. Sci. (N. Y.), 216:3 (2016), 345–496 | DOI
[55] V. E. Nazaikinskii, A. Yu. Savin, B. Yu. Sternin, Elliptic theory and noncommutative geometry. Nonlocal elliptic operators, Oper. Theory Adv. Appl., 183, Birkhäuser Verlag, Basel, 2008, xii+224 pp. | MR | Zbl
[56] J. Nečas, Les méthodes directes en théorie des équations elliptiques, Masson et Cie, Paris; Academia, Prague, 1967, 351 pp. | MR | Zbl
[57] J. R. Ockendon, A. B. Tayler, “The dynamics of a current collection system for an electric locomotive”, Proc. Roy. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 322:1551 (1971), 447–468 | DOI
[58] G. G. Onanov, A. L. Skubachevskij, “Differential equations with displaced arguments in stationary problems in the mechanics of a deformable body”, Soviet Appl. Mech., 15:5 (1979), 391–397 | DOI | MR | Zbl
[59] G. G. Onanov, E. L. Tsvetkov, “On the mininum of the energy functional with respect to functions with deviating argument in a stationary problem of elasticity theory”, Russian J. Math. Phys., 3:4 (1995), 491–500 | MR | Zbl
[60] V. V. Pod'yapol'skii, A. L. Skubachevskii, “On the completeness and basis property for a system of root functions of strongly elliptic functional-differential operators”, Russian Math. Surveys, 51:6 (1996), 1220–1222 | DOI | DOI | MR | Zbl
[61] V. V. Pod'yapol'skii, A. L. Skubachevskii, “The spectral asymptotics of strongly elliptic difference-differential operators”, Differential Equations, 35:6 (1999), 794–802 | MR | Zbl
[62] V. A. Popov, A. L. Skubachevskii, “Sectorial differential-difference operators with degeneration”, Dokl. Math., 80:2 (2009), 716–719 | DOI | MR | Zbl
[63] V. A. Popov, A. L. Skubachevskii, “A priori estimates for elliptic differential-difference operators with degeneration”, J. Math. Sci. (N. Y.), 171:1 (2010), 130–148 | DOI | MR | Zbl
[64] V. A. Popov, A. L. Skubachevskii, “Smoothness of generalized solutions of elliptic differential-difference equations with degenerations”, J. Math. Sci. (N. Y.), 190:1 (2013), 135–146 | DOI | MR | Zbl
[65] V. A. Popov, A. L. Skubachevskii, “Smoothness of generalized solutions of elliptic difference-differential equations with degeneration near boundaries of subdomains”, Russian Math. Surveys, 66:6 (2011), 1204–1206 | DOI | DOI | MR | Zbl
[66] V. A. Popov, A. L. Skubachevskii, “On smoothness of solutions of some elliptic functional-differential equations with degeneration”, Russ. J. Math. Phys., 20:4 (2013), 492–507 | DOI | MR | Zbl
[67] D. Przeworska-Rolewicz, Equations with transformed argument. An algebraic approach, Elsevier Scientific Publishing Co., Amsterdam; PWN–Polish Scientific Publishers, Warsaw, 1973, xv+354 pp. | MR | Zbl
[68] V. S. Rabinovich, “On the solvability of differential-difference equations on $\mathbb{R}^n$ and in a half-space”, Soviet Math. Dokl., 19 (1978), 1498–1502 | MR | Zbl
[69] V. S. Rabinovich, “Cauchy problem for parabolic differential-difference operators with variable coefficients”, Differential Equations, 19 (1983), 768–775 | MR | Zbl
[70] A. V. Razgulin, “Self-excited oscillations in the nonlinear parabolic problem with transformed argument”, Comput. Math. Math. Phys., 33:1 (1993), 61–70 | MR | Zbl
[71] A. V. Razgulin, “The stability of self-excited bifurcation oscillations in a nonlinear parabolic problem with transformed argument”, Comput. Math. Math. Phys., 33:10 (1993), 1323–1330 | MR | Zbl
[72] A. V. Razgulin, “Rotational multipetal waves in optical system with 2D feedback”, Chaos in optics, Proc. SPIE, 2039, ed. R. Roy, 1993, 342–352 | DOI
[73] A. V. Razgulin, “A class of parabolic functional-differential equations of nonlinear optics”, Differential Equations, 36:3 (2000), 449–456 | DOI | MR | Zbl
[74] F. Riesz, B. Sz.-Nagy, Leçons d'analyse fonctionnelle, 4ème éd., Gauthier-Villars, Paris; Akadémiai Kiadó, Budapest, 1965, viii+490 pp. | MR | MR | Zbl
[75] L. E. Rossovskii, “Coerciveness of functional-differential equations”, Math. Notes, 59:1 (1996), 75–82 | DOI | DOI | MR | Zbl
[76] L. E. Rossovskii, “Coerciveness problem for a class of functional differential equations”, Funct. Anal. Appl., 30:1 (1996), 62–64 | DOI | DOI | MR | Zbl
[77] L. E. Rossovskii, “Boundary value problems for elliptic functional-differential equations with dilatations and compressions of the arguments”, Trans. Moscow Math. Soc., 2001, Amer. Math. Soc., Providence, RI, 2001, 185–212 | MR | Zbl
[78] L. E. Rossovskii, “Elliptic functionally-differential equations with contractions of arguments”, Dokl. Math., 74:3 (2006), 809–811 | DOI | MR | Zbl
[79] L. E. Rossovskii, “Spectral properties of functional-differential operators and a Gårding-type inequality”, Dokl. Math., 82:2 (2010), 765–768 | DOI | MR | Zbl
[80] L. E. Rossovskii, “On the spectral stability of functional-differential equations”, Math. Notes, 90:6 (2011), 867–881 | DOI | DOI | MR | Zbl
[81] L. E. Rossovskii, “On a class of sectorial functional-differential operators”, Differential Equations, 48:2 (2012), 234–245 | DOI | MR | Zbl
[82] L. E. Rossovskii, “The coercivity of functional differential equations”, J. Math. Sci. (N. Y.), 201:5 (2014), 663–672 | DOI | MR | Zbl
[83] L. E. Rossovskii, “Ellipticheskie funktsionalno-differentsialnye uravneniya so szhatiem i rastyazheniem argumentov neizvestnoi funktsii”, Funktsionalno-differentsialnye uravneniya, SMFN, 54, RUDN, M., 2014, 3–138
[84] L. E. Rossovskii, A. L. Skubachevskii, “Solvability and regularity of solutions for some classes of elliptic functional-differential equations”, J. Math. Sci. (N. Y.), 104:2 (2001), 1008–1059 | DOI | MR | Zbl
[85] L. E. Rossovskii, A. L. Tasevich, “The first boundary-value problem for strongly elliptic functional-differential equations with orthotropic contractions”, Math. Notes, 97:5 (2015), 745–758 | DOI | DOI | MR | Zbl
[86] B. Y. Rubinshtein, L. M. Pismen, “Resonant two-dimensional patterns in optical cavities with a rotated beam”, Phys. Rev. A, 56:5 (1997), 4264–4272 | DOI
[87] W. Rudin, Functional analysis, McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., 1973, xiii+397 pp. | MR | MR | Zbl
[88] A. A. Samarskii, “Some problems in differential equation theory”, Differential Equations, 16 (1981), 1221–1228 | MR | Zbl
[89] K. Sato, T. Ueno, “Multi-dimensional diffusion and the Markov process on the boundary”, J. Math. Kyoto Univ., 4 (1964/1965), 529–605 | MR | Zbl
[90] A. Yu. Savin, “On the index of nonlocal elliptic operators corresponding to a nonisometric diffeomorphism”, Math. Notes, 90:5 (2011), 701–714 | DOI | DOI | MR | Zbl
[91] A. Yu. Savin, B. Yu. Sternin, “On the index of elliptic operators for the group of dilations”, Sb. Math., 202:10 (2011), 1505–1536 | DOI | DOI | MR | Zbl
[92] F. M. Schneider, E. Schöll, M. A. Dahlem, “Controlling the onset of traveling pulses in excitable media by nonlocal spatial coupling and time-delayed feedback”, Chaos, 19:1 (2009), 015110, 19 pp. | DOI | MR
[93] A. M. Selitskii, “The space of initial data of the 3d boundary-value problem for a parabolic differential-difference equation in the one-dimensional case”, Math. Notes, 92:4 (2012), 580–584 | DOI | DOI | MR | Zbl
[94] A. M. Selitskii, “Space of initial data for the second boundary-value problem for a parabolic differential-difference equation in Lipschitz domains”, Math. Notes, 94:3 (2013), 444–447 | DOI | DOI | MR | Zbl
[95] A. M. Selitskii, “$L_p$-solvability of parabolic problems with an operator satisfying the Kato conjecture”, Differential Equations, 51:6 (2015), 776–782 | DOI | DOI | MR | Zbl
[96] A. M. Selitskii, A. L. Skubachevskii, “The second boundary-value problem for parabolic differential-difference equations”, J. Math. Sci. (N. Y.), 143:4 (2007), 3386–3400 | DOI | MR
[97] M. A. Skryabin, “Nonlocal elliptic problems in dihedral angles and functional differential equations”, J. Math. Sci. (N. Y.), 129:5 (2005), 4227–4249 | DOI | MR | Zbl
[98] M. A. Skryabin, “Partition of unity and the strong ellipticity problem for functional differential operators”, J. Math. Sci. (N. Y.), 170:2 (2010), 270–282 | DOI | MR | Zbl
[99] A. L. Skubachevskii, “Some nonlocal elliptic boundary-value problems”, Differential Equations, 18:1132–1139 (1983) | MR | Zbl
[100] A. L. Skubachevskii, “On the spectrum of some nonlocal elliptic boundary value problems”, Math. USSR-Sb., 45:4 (1983), 543–553 | DOI | MR | Zbl
[101] A. L. Skubachevskii, “Nonlocal elliptic boundary-value problems with degeneration”, Differential Equations, 19 (1983), 344–355 | MR | Zbl
[102] A. L. Skubachevskii, “Smoothness of generalized solutions of the first boundary-value problem for an elliptic difference-differential equation”, Math. Notes, 34:1 (1983), 537–541 | DOI | MR | Zbl
[103] A. L. Skubachevskii, “Nonlocal boundary-value problems with a shift”, Math. Notes, 38:4 (1985), 833–839 | DOI | MR | Zbl
[104] A. L. Skubachevskii, “Elliptic problems with nonlocal conditions near the boundary”, Math. USSR-Sb., 57:1 (1987), 293–316 | DOI | MR | Zbl
[105] A. L. Skubachevskii, “The first boundary value problem for strongly elliptic differential-difference equations”, J. Differential Equations, 63:3 (1986), 332–361 | DOI | MR | Zbl
[106] A. L. Skubachevskii, “Eigenvalues and eigenfunctions of some nonlocal boundary-value problems”, Differential Equations, 25:1 (1989), 101–108 | MR | Zbl
[107] A. L. Skubachevskii, “On some problems for multidimensional diffusion processes”, Soviet Math. Dokl., 40:1 (1990), 75–79 | MR | Zbl
[108] A. L. Skubachevskii, “Boundary value problems for differential-difference equations with incommensurable shifts”, Russian Acad. Sci. Dokl. Math., 45:3 (1992), 695–699 | MR | Zbl
[109] A. L. Skubachevskii, “On some properties of elliptic and parabolic functional-differential equations”, Russian Math. Surveys, 51:1 (1996), 169–170 | DOI | DOI | MR | Zbl
[110] A. L. Skubachevskii, Elliptic functional differential equations and applications, Oper. Theory Adv. Appl., 91, Birkhäuser Verlag, Basel, 1997, x+293 pp. | MR | Zbl
[111] A. L. Skubachevskii, “On normality of some elliptic functional differential operators”, Funct. Anal. Appl., 31:4 (1997), 273–277 | DOI | DOI | MR | Zbl
[112] A. L. Skubachevskii, “Bifurcation of periodic solutions for nonlinear parabolic functional differential equations arising in optoelectronics”, Nonlinear Anal., 32:2 (1998), 267–278 | DOI | MR | Zbl
[113] A. L. Skubachevskii, “Elliptic differential-difference equations with degeneration”, Trans. Moscow Math. Soc., 1998, Amer. Math. Soc., Providence, RI, 1998, 217–256 | MR | Zbl
[114] A. L. Skubachevskii, “The Hopf bifurcation for a quasilinear parabolic functional-differential equation”, Differential Equations, 34:10 (1998), 1395–1402 | MR | Zbl
[115] A. L. Skubachevskii, “Neklassicheskie kraevye zadachi”, ch. I, SMFN, 26, RUDN, M., 2007, 3–132 ; С‡. II, 33, 2009, 3–179 ; A. L. Skubachevskii, “Nonclassical boundary value problems”, Part\;I, J. Math. Sci. (N. Y.), 155:2 (2008), 199–334 ; p. II, 166:4 (2010), 377–561 | MR | Zbl | MR | Zbl | DOI | DOI
[116] A. L. Skubachevskii, R. V. Shamin, “First mixed problem for a parabolic difference-differential equation”, Math. Notes, 66:1 (1999), 113–119 | DOI | DOI | MR | Zbl
[117] A. L. Skubachevskii, R. V. Shamin, “Second-order parabolic differential-difference equations”, Dokl. Math., 64:1 (2001), 98–101 | MR | Zbl
[118] A. L. Skubachevskii, R. V. Shamin, “The mixed boundary value problem for parabolic differential-difference equation”, Funct. Differ. Equ., 8:3-4 (2001), 407–424 | MR | Zbl
[119] A. L. Skubachevskii, E. L. Tsvetkov, “Secondary boundary-value problem for elliptic differential-difference equations”, Differential Equations, 25:10 (1989), 1245–1254 | MR | Zbl
[120] A. L. Skubachevskii, E. L. Tsvetkov, “General boundary-value problems for elliptic differential-difference equations”, Amer. Math. Soc. Transl. Ser. 2, 193, Amer. Math. Soc., Providence, RI, 1999, 153–199 | Zbl
[121] R. V. Shamin, “Spaces of initial data for differential equations in a Hilbert space”, Sb. Math., 194:9 (2003), 1411–1426 | DOI | DOI | MR | Zbl
[122] O. V. Solonukha, “On a class of essentially nonlinear elliptic differential-difference equations”, Proc. Steklov Inst. Math., 283 (2013), 226–244 | DOI | Zbl
[123] O. V. Solonukha, “On nonlinear and quasilinear elliptic functional differential equations”, Discrete Contin. Dyn. Syst. Ser. S, 9:3 (2016), 869–893 | DOI | MR
[124] K. Taira, On the existence of Feller semigroups with boundary conditions, Mem. Amer. Math. Soc., 99, No 475, Amer. Math. Soc., Providence, RI, 1992, viii+65 pp. | MR | Zbl
[125] E. L. Tsvetkov, “Solvability and spectrum of the third boundary problem for an elliptic differential-difference equation”, Math. Notes, 51:6 (1992), 599–603 | DOI | MR | Zbl
[126] E. L. Tsvetkov, “Smoothness of generalized solutions of the third boundary-value problem for an elliptic differential-difference equation”, Ukrainian Math. J., 45:8 (1993), 1272–1284 | DOI | MR | Zbl
[127] E. M. Varfolomeev, “The normality of some elliptic functional-differential operators of second order”, Russian Math. Surveys, 61:1 (2006), 184–185 | DOI | DOI | MR | Zbl
[128] E. M. Varfolomeev, “On the existence of orthonormal basis consisting of eigenfunctions of elliptic functional differential operators”, Funct. Differ. Equ., 13:2 (2006), 267–304 | MR
[129] E. M. Varfolomeev, “On some properties of elliptic and parabolic functional differential operators arising in nonlinear optics”, J. Math. Sci. (N. Y.), 153:5 (2008), 649–682 | DOI | MR | Zbl
[130] A. D. Venttsel', “On boundary conditions for multidimensional diffusion processes”, Theory Probab. Appl., 4:2 (1959), 164–177 | DOI | MR | Zbl
[131] M. I. Vishik, “O silno ellipticheskikh sistemakh differentsialnykh uravnenii”, Matem. sb., 29(71):3 (1951), 615–676 | MR | Zbl
[132] V. V. Vlasov, “Solubility and properties of solutions of functional-differential equations in Hilbert space”, Sb. Math., 186:8 (1995), 1147–1172 | DOI | MR | Zbl
[133] V. V. Vlasov, “On the solvability and estimates of solutions to functional-differential equations in Sobolev spaces”, Proc. Steklov Inst. Math., 227 (1999), 104–115 | MR | Zbl
[134] M. A. Vorontsov, W. J. Firth, “Pattern formation and competition in nonlinear optical systems with two-dimensional feedback”, Phys. Rev. A, 49:4 (1994), 2891–2903 | DOI
[135] M. A. Vorontsov, N. G. Iroshnikov, R. L. Abernathy, “Diffractive patterns in a nonlinear optical two-dimensional feedback system with field rotation”, Chaos Solitons Fractals, 4:8-9 (1994), 1701–1716 | DOI | Zbl
[136] M. A. Vorontsov, W. B. Miller (eds.), Self-organization in optical systems and applications in information technology, Springer Ser. Synergetics, 66, Springer-Verlag, Berlin, 1995, xvi+247 pp. | DOI | MR
[137] A. Yagi, “Coïncidence entre des espaces d'interpolation et des domaines de puissances fractionnaires d'opérateurs”, C. R. Acad. Sci. Paris Sér. I Math., 299:6 (1984), 173–176 | MR | Zbl