Boundary-value problems for elliptic functional-differential equations and their applications
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 71 (2016) no. 5, pp. 801-906 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Boundary-value problems are considered for strongly elliptic functional-differential equations in bounded domains. In contrast to the case of elliptic differential equations, smoothness of generalized solutions of such problems can be violated in the interior of the domain and may be preserved only on some subdomains, and the symbol of a self-adjoint semibounded functional-differential operator can change sign. Both necessary and sufficient conditions are obtained for the validity of a Gårding-type inequality in algebraic form. Spectral properties of strongly elliptic functional-differential operators are studied, and theorems are proved on smoothness of generalized solutions in certain subdomains and on preservation of smoothness on the boundaries of neighbouring subdomains. Applications of these results are found to the theory of non-local elliptic problems, to the Kato square-root problem for an operator, to elasticity theory, and to problems in non-linear optics. Bibliography: 137 titles.
Keywords: elliptic functional-differential equations, spectral properties, smoothness of generalized solutions, non-local elliptic problems, Kato square-root problem, three-layer plates, non-linear optical systems with two-dimensional feedback.
@article{RM_2016_71_5_a0,
     author = {A. L. Skubachevskii},
     title = {Boundary-value problems for elliptic functional-differential equations and their applications},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {801--906},
     year = {2016},
     volume = {71},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2016_71_5_a0/}
}
TY  - JOUR
AU  - A. L. Skubachevskii
TI  - Boundary-value problems for elliptic functional-differential equations and their applications
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2016
SP  - 801
EP  - 906
VL  - 71
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/RM_2016_71_5_a0/
LA  - en
ID  - RM_2016_71_5_a0
ER  - 
%0 Journal Article
%A A. L. Skubachevskii
%T Boundary-value problems for elliptic functional-differential equations and their applications
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2016
%P 801-906
%V 71
%N 5
%U http://geodesic.mathdoc.fr/item/RM_2016_71_5_a0/
%G en
%F RM_2016_71_5_a0
A. L. Skubachevskii. Boundary-value problems for elliptic functional-differential equations and their applications. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 71 (2016) no. 5, pp. 801-906. http://geodesic.mathdoc.fr/item/RM_2016_71_5_a0/

[1] M. S. Agranovich, “Nonself-adjoint elliptic operators on nonsmooth domains”, Russian J. Math. Phys., 2:2 (1994), 139–148 | MR | Zbl

[2] M. S. Agranovich, A. M. Selitskii, “Fractional powers of operators corresponding to coercive problems in Lipschitz domains”, Funct. Anal. Appl., 47:2 (2013), 83–95 | DOI | DOI | MR | Zbl

[3] V. A. Ambartsumyan, “K teorii fluktuatsii yarkosti v Mlechnom puti”, Dokl. AN SSSR, 44:6 (1944), 244–247 | MR

[4] A. B. Antonevich, “On the index of a pseudodifferential operator with a finite group of shifts”, Soviet Math. Dokl., 11 (1970), 168–170 | Zbl

[5] A. B. Antonevich, “Elliptic pseudodifferential operators with a finite group of shifts”, Math. USSR-Izv., 7:3 (1973), 661–673 | DOI | MR | Zbl

[6] A. B. Antonevich, “A class of pseudodifferential operators with deviating arguments on a torus”, Differential Equations, 11 (1975), 1155–1160 | MR | Zbl

[7] A. B. Antonevich, “Operators with a shift generated by the action of a compact Lie group”, Sib. Math. J., 20:3 (1979), 329–337 | DOI | MR | Zbl

[8] A. B. Antonevich, A. V. Lebedev, “Noether property of a functional-partial differential operator containing a linear transformation of the argument”, Differential Equations, 18 (1982), 697–704 | MR | Zbl

[9] W. Arendt, “Semigroups and evolution equations: functional calculus, reqularity and kernel estimates”, Evolutionary equations, v. 1, Handb. Differ. Equ., North-Holland, Amsterdam, 2004, 1–85 | MR | Zbl

[10] V. Arnol'd, Chapitres supplémentaires de la théorie des équations différentielles ordinaires, Mir, M., 1980, 324 pp. | MR | MR | Zbl | Zbl

[11] P. Auscher, S. Hofmann, A. McIntosch, P. Tchamitchian, “The Kato square root problem for higher order elliptic operators and systems on $\mathbb{R}^n$”, J. Evol. Equ., 1:4 (2001), 361–385 | DOI | MR | Zbl

[12] P. Auscher, P. Tchamitchian, “Square roots of elliptic second order divergence operators on strongly Lipschitz domains: $L^2$ theory”, J. Anal. Math., 90 (2003), 1–12 | DOI | MR | Zbl

[13] A. Axelsson, S. Keith, A. McIntosch, “The Kato square root problem for mixed boundary value problems”, J. London Math. Soc. (2), 74:1 (2006), 113–130 | DOI | MR | Zbl

[14] E. P. Belan, “On the interaction of traveling waves in a parabolic functional-differential equation”, Differential Equations, 40:5 (2004), 692–702 | DOI | MR | Zbl

[15] E. P. Belan, O. B. Lykova, “Rotating structures in a parabolic functional-differential equation”, Differential Equations, 40:10 (2004), 1419–1430 | DOI | MR | Zbl

[16] M. Sh. Birman, M. Z. Solomyak, “Spectral asymptotics of nonsmooth elliptic operators. I”, Trans. Moscow Math. Soc., 27, Amer. Math. Soc., Providence, RI, 1975, 1–52 | MR | Zbl

[17] A. V. Bitsadze, A. A. Samarskii, “On some simple generalizations of linear elliptic boundary problems”, Soviet Math. Dokl., 10 (1969), 398–400 | MR | Zbl

[18] K. Cooke, L. E. Rossovskii, A. L. Skubachevskii, “A boundary value problem for a functional-differential equation with a linearly transformed argument”, Differential Equations, 31:8 (1995), 1294–1299 | MR | Zbl

[19] G. Derfel, A. Iserles, “The pantograth equation in the complex plane”, J. Math. Anal. Appl., 213:1 (1997), 117–132 | DOI | MR | Zbl

[20] N. Dunford, J. T. Schwartz, Linear operators, v. II, Spectral theory. Self adjoint operators in Hilbert space, Interscience Publishers John Wiley Sons, New York–London, 1963, ix+859–1923+7 pp. | MR | MR | Zbl | Zbl

[21] S. P. Novikov, I. A. Dynnikov, “Discrete spectral symmetries of low-dimensional differential operators and difference operators on regular lattices and two-dimensional manifolds”, Russian Math. Surveys, 52:5 (1997), 1057–1116 | DOI | DOI | MR | Zbl

[22] A. F. M. ter Elst, D. W. Robinson, “On Kato's square root problem”, Hokkaido Math. J., 26:2 (1997), 365–376 | DOI | MR | Zbl

[23] W. Feller, “The parabolic differential equations and the associated semi-groups of transformations”, Ann. of Math. (2), 55:3 (1952), 468–519 | DOI | MR | Zbl

[24] L. S. Frank, “Factorization for difference operators”, J. Math. Anal. Appl., 62:1 (1978), 170–185 | DOI | MR | Zbl

[25] L. Gårding, “Dirichlet's problem for linear elliptic partial differential equations”, Math. Scand., 1 (1953), 55–72 | MR | Zbl

[26] I. C. Gohberg, M. G. Krein, Introduction to the theory of linear nonselfadjoint operators, Transl. Math. Monogr., 18, Amer. Math. Soc., Providence, RI, 1969, xv+378 pp. | MR | MR | Zbl | Zbl

[27] O. V. Guseva, “O kraevykh zadachakh dlya silno ellipticheskikh sistem”, Dokl. AN SSSR, 102:6 (1955), 1069–1072 | MR | Zbl

[28] A. J. Hall, G. C. Wake, “A functional differential equation arising in modelling of cell growth”, J. Austral. Math. Soc. Ser. B, 30:4 (1989), 424–435 | DOI | MR | Zbl

[29] P. Hartman, G. Stampacchia, “On some non-linear elliptic differential-functional equations”, Acta. Math., 115 (1966), 271–310 | DOI | MR | Zbl

[30] A. Iserles, “On the generalized pantograph functional-differential equation”, European J. Appl. Math., 4:1 (1993), 1–38 | DOI | MR | Zbl

[31] A. Iserles, Y. Liu, “On neutral functional-differential equations with proportional delays”, J. Math. Anal. Appl., 207:1 (1997), 73–95 | DOI | MR | Zbl

[32] A. G. Kamenskii, “Boundary-value problems for equations with formally symmetric differential-difference operators”, Differential Equations, 12 (1977), 569–576 | MR | Zbl

[33] G. A. Kamenskii, “Variational and boundary-value problems with deviating argument”, Differential Equations, 6 (1973), 1026–1032 | MR | Zbl

[34] G. A. Kamenskii, “On extrema of functionals with deviating argument”, Soviet Math. Dokl., 16 (1975), 1380–1383 | Zbl

[35] G. A. Kamenskii, “On a conditional extremum of a functional with deviating argument”, Soviet Math. Dokl., 18 (1978), 921–924 | MR | Zbl

[36] G. A. Kamenskii, Extrema of nonlocal functionals and boundary value problems for functional differential equations, Nova Science Publishers, Inc., New York, 2007, x+225 pp. | MR | Zbl

[37] G. A. Kamenskii, A. D. Myshkis, “Formulation of boundary-value problems for differential equations with deviating arguments containing several highest-order terms”, Differential Equations, 10 (1975), 302–309 | MR | Zbl

[38] G. A. Kamenskii, A. D. Myshkis, A. L. Skubachevskii, “Minimum value of a quadratic functional and linear elliptic boundary-value problems with deviating arguments”, Differential Equations, 16 (1981), 945–948 | MR | Zbl

[39] T. Kato, “Fractional powers of dissipative operators”, J. Math. Soc. Japan, 13:3 (1961), 246–274 | DOI | MR | Zbl

[40] T. Kato, “Fractional powers of dissipative operators. II”, J. Math. Soc. Japan, 14:2 (1962), 242–248 | DOI | MR | Zbl

[41] T. Kato, Perturbation theory for linear operators, Grundlehren Math. Wiss., 132, Springer-Verlag, New York, 1966, xix+592 pp. | MR | MR | Zbl | Zbl

[42] T. Kato, J. B. McLeod, “Functional-differential equation $y'(x)=ay(\lambda x)+by(x)$”, Bull. Amer. Math. Soc., 77:6 (1971), 891–937 | DOI | MR | Zbl

[43] A. M. Krall, “The development of general differential and general differential-boundary systems”, Rocky Mountain J. Math., 5:4 (1975), 493–542 | DOI | MR | Zbl

[44] O. A. Ladyzhenskaya, N. N. Ural'tseva, Linear and quasilinear elliptic equations, Academic Press, New York–London, 1968, xviii+495 pp. | MR | MR | Zbl | Zbl

[45] V. B. Lidskii, “Summability of series in the principal vectors of non-selfadjoint operators”, Amer. Math. Soc. Transl. Ser. 2, 40, Amer. Math. Soc., Providence, RI, 1964, 193–228 | MR | Zbl

[46] J. L. Lions, “Espaces d'interpolation et domaines de puissances fractionnaires d'opérateurs”, J. Math. Soc. Japan, 14:2 (1962), 233–241 | DOI | MR | Zbl

[47] J.-L. Lions, E. Magenes, Problèmes aux limites non homogènes et applications, v. 1, Travaux et Recherches Mathématiques, 17, Dunod, Paris, 1968, xx+372 pp. | MR | MR | Zbl | Zbl

[48] A. McIntosh, “On the comparability of $A^{1/2}$ and $A^{*1/2}$”, Proc. Amer. Math. Soc., 32:2 (1972), 430–434 | DOI | MR | Zbl

[49] V. P. Mikhaĭlov, Partial differential equations, Mir, M.; distributed by Imported Publications, Inc., 1978, 397 pp. | MR | MR | Zbl | Zbl

[50] S. G. Mikhlin, The problem of the minimum of a quadratic functional, Holden-Day Series in Mathematical Physics, Holden-Day, Inc., San Francisco, CA–London–Amsterdam, 1965, ix+155 pp. | MR | MR | Zbl

[51] A. B. Muravnik, “Uniqueness of the solution of the Cauchy problem for some differential-difference parabolic equations”, Differential Equations, 40:10 (2004), 1461–1466 | DOI | MR | Zbl

[52] A. B. Muravnik, “On the asymptotics of the solution of the Cauchy problem for some differential-difference parabolic equations”, Differential Equations, 41:4 (2005), 570–581 | DOI | MR | Zbl

[53] A. B. Muravnik, “On the Cauchy problem for parabolic equations with nonlocal high-order terms”, Dokl. Math., 71:3 (2005), 383–385 | MR | Zbl

[54] A. B. Muravnik, “Functional differential parabolic equations: integral transformations and qualitative properties of solutions of the Cauchy problem”, J. Math. Sci. (N. Y.), 216:3 (2016), 345–496 | DOI

[55] V. E. Nazaikinskii, A. Yu. Savin, B. Yu. Sternin, Elliptic theory and noncommutative geometry. Nonlocal elliptic operators, Oper. Theory Adv. Appl., 183, Birkhäuser Verlag, Basel, 2008, xii+224 pp. | MR | Zbl

[56] J. Nečas, Les méthodes directes en théorie des équations elliptiques, Masson et Cie, Paris; Academia, Prague, 1967, 351 pp. | MR | Zbl

[57] J. R. Ockendon, A. B. Tayler, “The dynamics of a current collection system for an electric locomotive”, Proc. Roy. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 322:1551 (1971), 447–468 | DOI

[58] G. G. Onanov, A. L. Skubachevskij, “Differential equations with displaced arguments in stationary problems in the mechanics of a deformable body”, Soviet Appl. Mech., 15:5 (1979), 391–397 | DOI | MR | Zbl

[59] G. G. Onanov, E. L. Tsvetkov, “On the mininum of the energy functional with respect to functions with deviating argument in a stationary problem of elasticity theory”, Russian J. Math. Phys., 3:4 (1995), 491–500 | MR | Zbl

[60] V. V. Pod'yapol'skii, A. L. Skubachevskii, “On the completeness and basis property for a system of root functions of strongly elliptic functional-differential operators”, Russian Math. Surveys, 51:6 (1996), 1220–1222 | DOI | DOI | MR | Zbl

[61] V. V. Pod'yapol'skii, A. L. Skubachevskii, “The spectral asymptotics of strongly elliptic difference-differential operators”, Differential Equations, 35:6 (1999), 794–802 | MR | Zbl

[62] V. A. Popov, A. L. Skubachevskii, “Sectorial differential-difference operators with degeneration”, Dokl. Math., 80:2 (2009), 716–719 | DOI | MR | Zbl

[63] V. A. Popov, A. L. Skubachevskii, “A priori estimates for elliptic differential-difference operators with degeneration”, J. Math. Sci. (N. Y.), 171:1 (2010), 130–148 | DOI | MR | Zbl

[64] V. A. Popov, A. L. Skubachevskii, “Smoothness of generalized solutions of elliptic differential-difference equations with degenerations”, J. Math. Sci. (N. Y.), 190:1 (2013), 135–146 | DOI | MR | Zbl

[65] V. A. Popov, A. L. Skubachevskii, “Smoothness of generalized solutions of elliptic difference-differential equations with degeneration near boundaries of subdomains”, Russian Math. Surveys, 66:6 (2011), 1204–1206 | DOI | DOI | MR | Zbl

[66] V. A. Popov, A. L. Skubachevskii, “On smoothness of solutions of some elliptic functional-differential equations with degeneration”, Russ. J. Math. Phys., 20:4 (2013), 492–507 | DOI | MR | Zbl

[67] D. Przeworska-Rolewicz, Equations with transformed argument. An algebraic approach, Elsevier Scientific Publishing Co., Amsterdam; PWN–Polish Scientific Publishers, Warsaw, 1973, xv+354 pp. | MR | Zbl

[68] V. S. Rabinovich, “On the solvability of differential-difference equations on $\mathbb{R}^n$ and in a half-space”, Soviet Math. Dokl., 19 (1978), 1498–1502 | MR | Zbl

[69] V. S. Rabinovich, “Cauchy problem for parabolic differential-difference operators with variable coefficients”, Differential Equations, 19 (1983), 768–775 | MR | Zbl

[70] A. V. Razgulin, “Self-excited oscillations in the nonlinear parabolic problem with transformed argument”, Comput. Math. Math. Phys., 33:1 (1993), 61–70 | MR | Zbl

[71] A. V. Razgulin, “The stability of self-excited bifurcation oscillations in a nonlinear parabolic problem with transformed argument”, Comput. Math. Math. Phys., 33:10 (1993), 1323–1330 | MR | Zbl

[72] A. V. Razgulin, “Rotational multipetal waves in optical system with 2D feedback”, Chaos in optics, Proc. SPIE, 2039, ed. R. Roy, 1993, 342–352 | DOI

[73] A. V. Razgulin, “A class of parabolic functional-differential equations of nonlinear optics”, Differential Equations, 36:3 (2000), 449–456 | DOI | MR | Zbl

[74] F. Riesz, B. Sz.-Nagy, Leçons d'analyse fonctionnelle, 4ème éd., Gauthier-Villars, Paris; Akadémiai Kiadó, Budapest, 1965, viii+490 pp. | MR | MR | Zbl

[75] L. E. Rossovskii, “Coerciveness of functional-differential equations”, Math. Notes, 59:1 (1996), 75–82 | DOI | DOI | MR | Zbl

[76] L. E. Rossovskii, “Coerciveness problem for a class of functional differential equations”, Funct. Anal. Appl., 30:1 (1996), 62–64 | DOI | DOI | MR | Zbl

[77] L. E. Rossovskii, “Boundary value problems for elliptic functional-differential equations with dilatations and compressions of the arguments”, Trans. Moscow Math. Soc., 2001, Amer. Math. Soc., Providence, RI, 2001, 185–212 | MR | Zbl

[78] L. E. Rossovskii, “Elliptic functionally-differential equations with contractions of arguments”, Dokl. Math., 74:3 (2006), 809–811 | DOI | MR | Zbl

[79] L. E. Rossovskii, “Spectral properties of functional-differential operators and a Gårding-type inequality”, Dokl. Math., 82:2 (2010), 765–768 | DOI | MR | Zbl

[80] L. E. Rossovskii, “On the spectral stability of functional-differential equations”, Math. Notes, 90:6 (2011), 867–881 | DOI | DOI | MR | Zbl

[81] L. E. Rossovskii, “On a class of sectorial functional-differential operators”, Differential Equations, 48:2 (2012), 234–245 | DOI | MR | Zbl

[82] L. E. Rossovskii, “The coercivity of functional differential equations”, J. Math. Sci. (N. Y.), 201:5 (2014), 663–672 | DOI | MR | Zbl

[83] L. E. Rossovskii, “Ellipticheskie funktsionalno-differentsialnye uravneniya so szhatiem i rastyazheniem argumentov neizvestnoi funktsii”, Funktsionalno-differentsialnye uravneniya, SMFN, 54, RUDN, M., 2014, 3–138

[84] L. E. Rossovskii, A. L. Skubachevskii, “Solvability and regularity of solutions for some classes of elliptic functional-differential equations”, J. Math. Sci. (N. Y.), 104:2 (2001), 1008–1059 | DOI | MR | Zbl

[85] L. E. Rossovskii, A. L. Tasevich, “The first boundary-value problem for strongly elliptic functional-differential equations with orthotropic contractions”, Math. Notes, 97:5 (2015), 745–758 | DOI | DOI | MR | Zbl

[86] B. Y. Rubinshtein, L. M. Pismen, “Resonant two-dimensional patterns in optical cavities with a rotated beam”, Phys. Rev. A, 56:5 (1997), 4264–4272 | DOI

[87] W. Rudin, Functional analysis, McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., 1973, xiii+397 pp. | MR | MR | Zbl

[88] A. A. Samarskii, “Some problems in differential equation theory”, Differential Equations, 16 (1981), 1221–1228 | MR | Zbl

[89] K. Sato, T. Ueno, “Multi-dimensional diffusion and the Markov process on the boundary”, J. Math. Kyoto Univ., 4 (1964/1965), 529–605 | MR | Zbl

[90] A. Yu. Savin, “On the index of nonlocal elliptic operators corresponding to a nonisometric diffeomorphism”, Math. Notes, 90:5 (2011), 701–714 | DOI | DOI | MR | Zbl

[91] A. Yu. Savin, B. Yu. Sternin, “On the index of elliptic operators for the group of dilations”, Sb. Math., 202:10 (2011), 1505–1536 | DOI | DOI | MR | Zbl

[92] F. M. Schneider, E. Schöll, M. A. Dahlem, “Controlling the onset of traveling pulses in excitable media by nonlocal spatial coupling and time-delayed feedback”, Chaos, 19:1 (2009), 015110, 19 pp. | DOI | MR

[93] A. M. Selitskii, “The space of initial data of the 3d boundary-value problem for a parabolic differential-difference equation in the one-dimensional case”, Math. Notes, 92:4 (2012), 580–584 | DOI | DOI | MR | Zbl

[94] A. M. Selitskii, “Space of initial data for the second boundary-value problem for a parabolic differential-difference equation in Lipschitz domains”, Math. Notes, 94:3 (2013), 444–447 | DOI | DOI | MR | Zbl

[95] A. M. Selitskii, “$L_p$-solvability of parabolic problems with an operator satisfying the Kato conjecture”, Differential Equations, 51:6 (2015), 776–782 | DOI | DOI | MR | Zbl

[96] A. M. Selitskii, A. L. Skubachevskii, “The second boundary-value problem for parabolic differential-difference equations”, J. Math. Sci. (N. Y.), 143:4 (2007), 3386–3400 | DOI | MR

[97] M. A. Skryabin, “Nonlocal elliptic problems in dihedral angles and functional differential equations”, J. Math. Sci. (N. Y.), 129:5 (2005), 4227–4249 | DOI | MR | Zbl

[98] M. A. Skryabin, “Partition of unity and the strong ellipticity problem for functional differential operators”, J. Math. Sci. (N. Y.), 170:2 (2010), 270–282 | DOI | MR | Zbl

[99] A. L. Skubachevskii, “Some nonlocal elliptic boundary-value problems”, Differential Equations, 18:1132–1139 (1983) | MR | Zbl

[100] A. L. Skubachevskii, “On the spectrum of some nonlocal elliptic boundary value problems”, Math. USSR-Sb., 45:4 (1983), 543–553 | DOI | MR | Zbl

[101] A. L. Skubachevskii, “Nonlocal elliptic boundary-value problems with degeneration”, Differential Equations, 19 (1983), 344–355 | MR | Zbl

[102] A. L. Skubachevskii, “Smoothness of generalized solutions of the first boundary-value problem for an elliptic difference-differential equation”, Math. Notes, 34:1 (1983), 537–541 | DOI | MR | Zbl

[103] A. L. Skubachevskii, “Nonlocal boundary-value problems with a shift”, Math. Notes, 38:4 (1985), 833–839 | DOI | MR | Zbl

[104] A. L. Skubachevskii, “Elliptic problems with nonlocal conditions near the boundary”, Math. USSR-Sb., 57:1 (1987), 293–316 | DOI | MR | Zbl

[105] A. L. Skubachevskii, “The first boundary value problem for strongly elliptic differential-difference equations”, J. Differential Equations, 63:3 (1986), 332–361 | DOI | MR | Zbl

[106] A. L. Skubachevskii, “Eigenvalues and eigenfunctions of some nonlocal boundary-value problems”, Differential Equations, 25:1 (1989), 101–108 | MR | Zbl

[107] A. L. Skubachevskii, “On some problems for multidimensional diffusion processes”, Soviet Math. Dokl., 40:1 (1990), 75–79 | MR | Zbl

[108] A. L. Skubachevskii, “Boundary value problems for differential-difference equations with incommensurable shifts”, Russian Acad. Sci. Dokl. Math., 45:3 (1992), 695–699 | MR | Zbl

[109] A. L. Skubachevskii, “On some properties of elliptic and parabolic functional-differential equations”, Russian Math. Surveys, 51:1 (1996), 169–170 | DOI | DOI | MR | Zbl

[110] A. L. Skubachevskii, Elliptic functional differential equations and applications, Oper. Theory Adv. Appl., 91, Birkhäuser Verlag, Basel, 1997, x+293 pp. | MR | Zbl

[111] A. L. Skubachevskii, “On normality of some elliptic functional differential operators”, Funct. Anal. Appl., 31:4 (1997), 273–277 | DOI | DOI | MR | Zbl

[112] A. L. Skubachevskii, “Bifurcation of periodic solutions for nonlinear parabolic functional differential equations arising in optoelectronics”, Nonlinear Anal., 32:2 (1998), 267–278 | DOI | MR | Zbl

[113] A. L. Skubachevskii, “Elliptic differential-difference equations with degeneration”, Trans. Moscow Math. Soc., 1998, Amer. Math. Soc., Providence, RI, 1998, 217–256 | MR | Zbl

[114] A. L. Skubachevskii, “The Hopf bifurcation for a quasilinear parabolic functional-differential equation”, Differential Equations, 34:10 (1998), 1395–1402 | MR | Zbl

[115] A. L. Skubachevskii, “Neklassicheskie kraevye zadachi”, ch. I, SMFN, 26, RUDN, M., 2007, 3–132 ; С‡. II, 33, 2009, 3–179 ; A. L. Skubachevskii, “Nonclassical boundary value problems”, Part\;I, J. Math. Sci. (N. Y.), 155:2 (2008), 199–334 ; p. II, 166:4 (2010), 377–561 | MR | Zbl | MR | Zbl | DOI | DOI

[116] A. L. Skubachevskii, R. V. Shamin, “First mixed problem for a parabolic difference-differential equation”, Math. Notes, 66:1 (1999), 113–119 | DOI | DOI | MR | Zbl

[117] A. L. Skubachevskii, R. V. Shamin, “Second-order parabolic differential-difference equations”, Dokl. Math., 64:1 (2001), 98–101 | MR | Zbl

[118] A. L. Skubachevskii, R. V. Shamin, “The mixed boundary value problem for parabolic differential-difference equation”, Funct. Differ. Equ., 8:3-4 (2001), 407–424 | MR | Zbl

[119] A. L. Skubachevskii, E. L. Tsvetkov, “Secondary boundary-value problem for elliptic differential-difference equations”, Differential Equations, 25:10 (1989), 1245–1254 | MR | Zbl

[120] A. L. Skubachevskii, E. L. Tsvetkov, “General boundary-value problems for elliptic differential-difference equations”, Amer. Math. Soc. Transl. Ser. 2, 193, Amer. Math. Soc., Providence, RI, 1999, 153–199 | Zbl

[121] R. V. Shamin, “Spaces of initial data for differential equations in a Hilbert space”, Sb. Math., 194:9 (2003), 1411–1426 | DOI | DOI | MR | Zbl

[122] O. V. Solonukha, “On a class of essentially nonlinear elliptic differential-difference equations”, Proc. Steklov Inst. Math., 283 (2013), 226–244 | DOI | Zbl

[123] O. V. Solonukha, “On nonlinear and quasilinear elliptic functional differential equations”, Discrete Contin. Dyn. Syst. Ser. S, 9:3 (2016), 869–893 | DOI | MR

[124] K. Taira, On the existence of Feller semigroups with boundary conditions, Mem. Amer. Math. Soc., 99, No 475, Amer. Math. Soc., Providence, RI, 1992, viii+65 pp. | MR | Zbl

[125] E. L. Tsvetkov, “Solvability and spectrum of the third boundary problem for an elliptic differential-difference equation”, Math. Notes, 51:6 (1992), 599–603 | DOI | MR | Zbl

[126] E. L. Tsvetkov, “Smoothness of generalized solutions of the third boundary-value problem for an elliptic differential-difference equation”, Ukrainian Math. J., 45:8 (1993), 1272–1284 | DOI | MR | Zbl

[127] E. M. Varfolomeev, “The normality of some elliptic functional-differential operators of second order”, Russian Math. Surveys, 61:1 (2006), 184–185 | DOI | DOI | MR | Zbl

[128] E. M. Varfolomeev, “On the existence of orthonormal basis consisting of eigenfunctions of elliptic functional differential operators”, Funct. Differ. Equ., 13:2 (2006), 267–304 | MR

[129] E. M. Varfolomeev, “On some properties of elliptic and parabolic functional differential operators arising in nonlinear optics”, J. Math. Sci. (N. Y.), 153:5 (2008), 649–682 | DOI | MR | Zbl

[130] A. D. Venttsel', “On boundary conditions for multidimensional diffusion processes”, Theory Probab. Appl., 4:2 (1959), 164–177 | DOI | MR | Zbl

[131] M. I. Vishik, “O silno ellipticheskikh sistemakh differentsialnykh uravnenii”, Matem. sb., 29(71):3 (1951), 615–676 | MR | Zbl

[132] V. V. Vlasov, “Solubility and properties of solutions of functional-differential equations in Hilbert space”, Sb. Math., 186:8 (1995), 1147–1172 | DOI | MR | Zbl

[133] V. V. Vlasov, “On the solvability and estimates of solutions to functional-differential equations in Sobolev spaces”, Proc. Steklov Inst. Math., 227 (1999), 104–115 | MR | Zbl

[134] M. A. Vorontsov, W. J. Firth, “Pattern formation and competition in nonlinear optical systems with two-dimensional feedback”, Phys. Rev. A, 49:4 (1994), 2891–2903 | DOI

[135] M. A. Vorontsov, N. G. Iroshnikov, R. L. Abernathy, “Diffractive patterns in a nonlinear optical two-dimensional feedback system with field rotation”, Chaos Solitons Fractals, 4:8-9 (1994), 1701–1716 | DOI | Zbl

[136] M. A. Vorontsov, W. B. Miller (eds.), Self-organization in optical systems and applications in information technology, Springer Ser. Synergetics, 66, Springer-Verlag, Berlin, 1995, xvi+247 pp. | DOI | MR

[137] A. Yagi, “Coïncidence entre des espaces d'interpolation et des domaines de puissances fractionnaires d'opérateurs”, C. R. Acad. Sci. Paris Sér. I Math., 299:6 (1984), 173–176 | MR | Zbl