A problem involving integers all of whose prime divisors belong to given arithmetic progressions
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 71 (2016) no. 4, pp. 790-792
@article{RM_2016_71_4_a6,
author = {M. E. Changa},
title = {A problem involving integers all of whose prime divisors belong to given arithmetic progressions},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {790--792},
year = {2016},
volume = {71},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2016_71_4_a6/}
}
TY - JOUR AU - M. E. Changa TI - A problem involving integers all of whose prime divisors belong to given arithmetic progressions JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2016 SP - 790 EP - 792 VL - 71 IS - 4 UR - http://geodesic.mathdoc.fr/item/RM_2016_71_4_a6/ LA - en ID - RM_2016_71_4_a6 ER -
M. E. Changa. A problem involving integers all of whose prime divisors belong to given arithmetic progressions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 71 (2016) no. 4, pp. 790-792. http://geodesic.mathdoc.fr/item/RM_2016_71_4_a6/
[1] E. Landau, Handbuch der Lehre von der Verteilung der Primzahlen, Teubner, Leipzig, 1909, xviii+564 pp., ix+567–961 pp. | MR | Zbl
[2] A. A. Karatsuba, UMN, 66:2(398) (2011), 3–14 | DOI | DOI | MR | Zbl
[3] K. Prakhar, Raspredelenie prostykh chisel, Mir, M., 1967, 511 pp. | MR | MR | Zbl | Zbl
[4] M. E. Changa, Metody analiticheskoi teorii chisel, NITs “Regulyarnaya i khaoticheskaya dinamika”, M.–Izhevsk, 2013, 228 pp.
[5] M. E. Changa, Izv. RAN. Ser. matem., 69:2 (2005), 205–220 | DOI | DOI | MR | Zbl