A problem involving integers all of whose prime divisors belong to given arithmetic progressions
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 71 (2016) no. 4, pp. 790-792
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_2016_71_4_a6,
     author = {M. E. Changa},
     title = {A problem involving integers all of whose prime divisors belong to given arithmetic progressions},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {790--792},
     year = {2016},
     volume = {71},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2016_71_4_a6/}
}
TY  - JOUR
AU  - M. E. Changa
TI  - A problem involving integers all of whose prime divisors belong to given arithmetic progressions
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2016
SP  - 790
EP  - 792
VL  - 71
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/RM_2016_71_4_a6/
LA  - en
ID  - RM_2016_71_4_a6
ER  - 
%0 Journal Article
%A M. E. Changa
%T A problem involving integers all of whose prime divisors belong to given arithmetic progressions
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2016
%P 790-792
%V 71
%N 4
%U http://geodesic.mathdoc.fr/item/RM_2016_71_4_a6/
%G en
%F RM_2016_71_4_a6
M. E. Changa. A problem involving integers all of whose prime divisors belong to given arithmetic progressions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 71 (2016) no. 4, pp. 790-792. http://geodesic.mathdoc.fr/item/RM_2016_71_4_a6/

[1] E. Landau, Handbuch der Lehre von der Verteilung der Primzahlen, Teubner, Leipzig, 1909, xviii+564 pp., ix+567–961 pp. | MR | Zbl

[2] A. A. Karatsuba, UMN, 66:2(398) (2011), 3–14 | DOI | DOI | MR | Zbl

[3] K. Prakhar, Raspredelenie prostykh chisel, Mir, M., 1967, 511 pp. | MR | MR | Zbl | Zbl

[4] M. E. Changa, Metody analiticheskoi teorii chisel, NITs “Regulyarnaya i khaoticheskaya dinamika”, M.–Izhevsk, 2013, 228 pp.

[5] M. E. Changa, Izv. RAN. Ser. matem., 69:2 (2005), 205–220 | DOI | DOI | MR | Zbl