Rational solutions of a Riccati equation
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 71 (2016) no. 4, pp. 787-789 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_2016_71_4_a5,
     author = {V. V. Sokolov and A. B. Shabat},
     title = {Rational solutions of a {Riccati} equation},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {787--789},
     year = {2016},
     volume = {71},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2016_71_4_a5/}
}
TY  - JOUR
AU  - V. V. Sokolov
AU  - A. B. Shabat
TI  - Rational solutions of a Riccati equation
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2016
SP  - 787
EP  - 789
VL  - 71
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/RM_2016_71_4_a5/
LA  - en
ID  - RM_2016_71_4_a5
ER  - 
%0 Journal Article
%A V. V. Sokolov
%A A. B. Shabat
%T Rational solutions of a Riccati equation
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2016
%P 787-789
%V 71
%N 4
%U http://geodesic.mathdoc.fr/item/RM_2016_71_4_a5/
%G en
%F RM_2016_71_4_a5
V. V. Sokolov; A. B. Shabat. Rational solutions of a Riccati equation. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 71 (2016) no. 4, pp. 787-789. http://geodesic.mathdoc.fr/item/RM_2016_71_4_a5/

[1] A. A. Bolibrukh, Fuksovy differentsialnye uravneniya i golomorfnye rassloeniya, MTsNMO, M., 2000, 127 pp.

[2] J. J. Kovacic, “An algorithm for solving second order linear homogeneous differential equations”, J. Symbolic Comput., 2:1 (1986), 3–43 | DOI | MR | Zbl

[3] U. Drach, “Sur l'intégration par quadratures de l'équation différentielle $\frac{d^2y}{dx^2}=[\varphi(x)+h]y$”, C. R. Acad. Sci. Paris, 168 (1919), 337–340 | Zbl