Self-adjoint commuting differential operators of rank two
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 71 (2016) no. 4, pp. 751-779 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This is a survey of results on self-adjoint commuting ordinary differential operators of rank two. In particular, the action of automorphisms of the first Weyl algebra on the set of commuting differential operators with polynomial coefficients is discussed, as well as the problem of constructing algebro-geometric solutions of rank $l>1$ of soliton equations. Bibliography: 59 titles.
Keywords: commuting differential operators of rank two, self-adjoint operators, Weyl algebra.
@article{RM_2016_71_4_a2,
     author = {A. E. Mironov},
     title = {Self-adjoint commuting differential operators of rank two},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {751--779},
     year = {2016},
     volume = {71},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2016_71_4_a2/}
}
TY  - JOUR
AU  - A. E. Mironov
TI  - Self-adjoint commuting differential operators of rank two
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2016
SP  - 751
EP  - 779
VL  - 71
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/RM_2016_71_4_a2/
LA  - en
ID  - RM_2016_71_4_a2
ER  - 
%0 Journal Article
%A A. E. Mironov
%T Self-adjoint commuting differential operators of rank two
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2016
%P 751-779
%V 71
%N 4
%U http://geodesic.mathdoc.fr/item/RM_2016_71_4_a2/
%G en
%F RM_2016_71_4_a2
A. E. Mironov. Self-adjoint commuting differential operators of rank two. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 71 (2016) no. 4, pp. 751-779. http://geodesic.mathdoc.fr/item/RM_2016_71_4_a2/

[1] J. L. Burchnall, T. W. Chaundy, “Commutative ordinary differential operators”, Proc. London Math. Soc. (2), 21:1 (1923), 420–440 | DOI | MR | Zbl

[2] J. L. Burchnall, T. W. Chaundy, “Commutative ordinary differential operators”, Proc. Roy. Soc. Lond. Ser. A, 118:780 (1928), 557–583 | DOI | Zbl

[3] J. L. Burchnall, T. W. Chaundy, “Commutative ordinary differential operators. II. The identity $P^n=Q^m$”, Proc. Roy. Soc. Lond. Ser. A, 134:824 (1931), 471–485 | DOI | Zbl

[4] I. M. Krichever, “Metody algebraicheskoi geometrii v teorii nelineinykh uravnenii”, UMN, 32:6(198) (1977), 183–208 | MR | Zbl

[5] I. M. Krichever, “Kommutativnye koltsa obyknovennykh lineinykh differentsialnykh operatorov”, Funkts. analiz i ego pril., 12:3 (1978), 20–31 | MR | Zbl

[6] V. G. Drinfeld, “O kommutativnykh podkoltsakh nekotorykh nekommutativnykh kolets”, Funkts. analiz i ego pril., 11:1 (1977), 11–14 | MR | Zbl

[7] D. Mumford, “An algebro-geometric construction of commuting operators and of solutions to the Toda lattice equation, Korteweg de Vries equation and related non-linear equation”, Proceedings of the International Symposium on Algebraic Geometry (Kyoto Univ., Kyoto, 1977), Kinokuniya Book Store, Tokyo, 1978, 115–153 | MR

[8] I. M. Krichever, S. P. Novikov, “Golomorfnye rassloeniya i nelineinye uravneniya. Konechnozonnye resheniya ranga 2”, Dokl. AN SSSR, 247:1 (1979), 33–37 | MR | Zbl

[9] I. M. Krichever, S. P. Novikov, “Golomorfnye rassloeniya nad algebraicheskimi krivymi i nelineinye uravneniya”, UMN, 35:6(216) (1980), 47–68 | MR | Zbl

[10] O. I. Mokhov, “Kommutiruyuschie differentsialnye operatory ranga 3 i nelineinye uravneniya”, Izv. AN SSSR. Ser. matem., 53:6 (1989), 1291–1315 ; O. I. Mokhov, “Commuting differential operators of rank 3, and nonlinear differential equations”, Math. USSR-Izv., 35:3 (1990), 629–655 | MR | Zbl | DOI

[11] O. I. Mokhov, “Kommutiruyuschie obyknovennye differentsialnye operatory ranga 3, otvechayuschie ellipticheskoi krivoi”, UMN, 37:4(226) (1982), 169–170 | MR | Zbl

[12] A. E. Mironov, “Ob odnom koltse kommutiruyuschikh differentsialnykh operatorov ranga dva, otvechayuschem krivoi roda dva”, Matem. sb., 195:5 (2004), 103–114 | DOI | MR | Zbl

[13] A. E. Mironov, “Kommutiruyuschie differentsialnye operatory ranga 2, otvechayuschie krivoi roda 2”, Funkts. analiz i ego pril., 39:3 (2005), 91–94 | DOI | MR | Zbl

[14] A. E. Mironov, “O kommutiruyuschikh differentsialnykh operatorakh ranga 2”, Sib. elektron. matem. izv., 6 (2009), 533–536 | MR | Zbl

[15] D. Zuo, “Commuting differential operators of rank 3 associated to a curve of genus 2”, SIGMA, 8 (2012), 044, 11 pp. | DOI | MR | Zbl

[16] A. E. Mironov, “Self-adjoint commuting ordinary differential operators”, Invent. Math., 197:2 (2014), 417–431 | DOI | MR | Zbl

[17] A. E. Mironov, “Periodic and rapid decay rank two self-adjoint commuting differential operators”, Topology, geometry, integrable systems, and mathematical physics, Amer. Math. Soc. Transl. Ser. 2, 234, Amer. Math. Soc., Providence, RI, 2014, 309–321 | MR

[18] V. N. Davletshina, “O samosopryazhennykh kommutiruyuschikh differentsialnykh operatorakh ranga dva”, Sib. elektron. matem. izv., 10 (2013), 109–112 | MR | Zbl

[19] V. N. Davletshina, E. I. Shamaev, “O kommutiruyuschikh differentsialnykh operatorakh ranga dva”, Sib. matem. zhurn., 55:4 (2014), 744–749 | MR | Zbl

[20] V. N. Davletshina, “Samosopryazhennye kommutiruyuschie differentsialnye operatory ranga dva i ikh deformatsii, zadannye solitonnymi uravneniyami”, Matem. zametki, 97:3 (2015), 350–358 | DOI | MR | Zbl

[21] V. N. Davletshina, “Kommutiruyuschie differentsialnye operatory ranga dva s trigonometricheskimi koeffitsientami”, Sib. matem. zhurn., 56:3 (2015), 513–519 | DOI | Zbl

[22] O. I. Mokhov, “O kommutativnykh podalgebrakh algebr Veilya, svyazannykh s kommutiruyuschimi operatorami proizvolnogo ranga i roda”, Matem. zametki, 94:2 (2013), 314–316 | DOI | MR | Zbl

[23] O. I. Mokhov, “Commuting ordinary differential operators of arbitrary genus and arbitrary rank with polynomial coefficients”, Topology, geometry, integrable systems, and mathematical physics, Amer. Math. Soc. Transl. Ser. 2, 234, Amer. Math. Soc., Providence, RI, 2014, 323–336 | MR

[24] V. C. Oganesyan, “Kommutiruyuschie differentsialnye operatory ranga 2 proizvolnogo roda ${g}$ s polinomialnymi koeffitsientami”, UMN, 70:1(421) (2015), 179–180 | DOI | MR | Zbl

[25] V. Oganesyan, “Explicit characterization of some commuting differential operators of rank 2”, Int. Math. Res. Not. IMRN (to appear) , published online 2016 | DOI

[26] V. C. Oganesyan, “Obschie sobstvennye funktsii kommutiruyuschikh differentsialnykh operatorov ranga 2”, Matem. zametki, 99:2 (2016), 283–287 | DOI | MR | Zbl

[27] V. C. Oganesyan, “Kommutiruyuschie differentsialnye operatory ranga 2 s polinomialnymi koeffitsientami”, Funkts. analiz i ego pril., 50:1 (2016), 67–75 | DOI | Zbl

[28] A. E. Mironov, B. T. Saparbaeva, “O sobstvennykh funktsiyakh odnomernogo operatora Shrëdingera s polinomialnym potentsialom”, Dokl. RAN, 461:3 (2015), 261–262 | DOI | MR | Zbl

[29] A. E. Mironov, A. B. Zheglov, “Commuting ordinary differential operators with polynomial coefficients and automorphisms of the first Weyl algebra”, Int. Math. Res. Not. IMRN, 2016:10 (2016), 2974–2993 | DOI

[30] A. B. Zheglov, A. E. Mironov, “O kommutiruyuschikh differentsialnykh operatorakh s polinomialnymi koeffitsientami, otvechayuschikh spektralnym krivym roda odin”, Dokl. RAN, 462:2 (2015), 135–136 | MR | Zbl

[31] I. M. Krichever, S. P. Novikov, “Dvumerizovannaya tsepochka Tody, kommutiruyuschie raznostnye operatory i golomorfnye rassloeniya”, UMN, 58:3(351) (2003), 51–88 | DOI | MR | Zbl

[32] G. Wallenberg, “Über die Vertauschbarkeit homogener linearer Differentialausdrücke”, Arch. Math. Phys. (3), 4 (1903), 252–268 | Zbl

[33] I. Schur, “Über vertauschbare lineare Differentialausdrücke”, Sitzungsber. Berliner Math. Ges., 4 (1905), 2–8 | Zbl

[34] S. P. Novikov, “Periodicheskaya zadacha dlya uravneniya Kortevega–de Friza. I”, Funkts. analiz i ego pril., 8:3 (1974), 54–66 | MR | Zbl

[35] B. A. Dubrovin, “Periodicheskaya zadacha dlya uravneniya Kortevega–de Friza v klasse konechnozonnykh petentsialov”, Funkts. analiz i ego pril., 9:3 (1975), 41–51 | MR | Zbl

[36] A. R. Its, V. B. Matveev, “Operatory Shrëdingera s konechnozonnym spektrom i ${N}$-solitonnye resheniya uravneniya Kortevega–de Frisa”, TMF, 23:1 (1975), 51–68 | MR

[37] B. A. Dubrovin, V. B. Matveev, S. P. Novikov, “Nelineinye uravneniya tipa Kortevega–de Friza, konechnozonnye lineinye operatory i abelevy mnogoobraziya”, UMN, 31:1(187) (1976), 55–136 | MR | Zbl

[38] M.-P. Grosset, A. P. Veselov, “Lamé equation, quantum Euler top and elliptic Bernoulli polynomials”, Proc. Edinb. Math. Soc. (2), 51:03 (2008), 635–650 | DOI | MR | Zbl

[39] J. C. Eilbeck, V. Z. Enolski, E. Previato, “Spectral curves of operators with elliptic coefficients”, SIGMA, 3 (2007), 045, 17 pp. | DOI | MR | Zbl

[40] F. Gesztesy, K. Unterkofler, R. Weikard, “An explicit characterization of Calogero–Moser systems”, Trans. Amer. Math. Soc., 358:2 (2006), 603–656 | DOI | MR | Zbl

[41] P. Dehornoy, “Opérateurs différentiels et courbes elliptiques”, Compos. Math., 43:1 (1981), 71–99 | MR | Zbl

[42] P. G. Grinevich, “Ratsionalnye resheniya uravnenii kommutatsii differentsialnykh operatorov”, Funkts. analiz i ego pril., 16:1 (1982), 19–24 | MR | Zbl

[43] S. P. Novikov, P. G. Grinevich, “O spektralnoi teorii kommutiruyuschikh operatorov ranga 2 s periodicheskimi koeffitsientami”, Funkts. analiz i ego pril., 16:1 (1982), 25–26 | MR | Zbl

[44] F. A. Grünbaum, “Commuting pairs of linear ordinary differential operators of orders four and six”, Phys. D, 31:3 (1988), 424–433 | DOI | MR | Zbl

[45] G. A. Latham, “Rank 2 commuting ordinary differential operators and Darboux conjugates of KdV”, Appl. Math. Lett., 8:6 (1995), 73–78 | DOI | MR | Zbl

[46] G. A. Latham, E. Previato, “Darboux transformations for higher-rank Kadomtsev–Petviashvili and Krichever–Novikov equations”, Acta Appl. Math., 39:1-3 (1995), 405–433 | DOI | MR | Zbl

[47] O. I. Mokhov, “On commutative subalgebras of Weyl algebra, which are associated with an elliptic curve”, Mezhdunarodnaya konferentsiya po algebre, posvyaschennaya pamyati A. I. Shirshova (1921–1981), Tezisy dokladov po teorii kolets, algebr i modulei (Barnaul, 20–25 avgusta 1991\;g.), IM, Novosibirsk, 1991, 85

[48] O. I. Mokhov, “On the commutative subalgebras of Weyl algebra, which are generated by the Chebyshev polynomials”, Third International Conference on Algebra in memory of M. I. Kargapolov (1928–1976) (Krasnoyarsk, Russia, 23–28 August 1993), Inoprof, Krasnoyarsk, 1993, 421

[49] E. Previato, G. Wilson, “Differential operators and rank 2 bundles over elliptic curves”, Compos. Math., 81:1 (1992), 107–119 | MR | Zbl

[50] J. Dixmier, “Sur les algèbres de Weyl”, Bull. Soc. Math. France, 96 (1968), 209–242 | MR | Zbl

[51] S. P. Novikov, “Kommutiruyuschie operatory ranga $\ell>1$ s periodicheskimi koeffitsientami”, Dokl. AN SSSR, 263:6 (1982), 1311–1314 | MR | Zbl

[52] A. B. Zheglov, A. E. Mironov, B. T. Saparbaeva, “Kommutiruyuschie differentsialnye operatory Krichevera–Novikova s polinomialnymi koeffitsientami”, Sib. matem. zhurn. (to appear)

[53] T. Shiota, “Characterization of Jacobian varieties in terms of soliton equations”, Invent. Math., 83:2 (1986), 333–382 | DOI | MR | Zbl

[54] A. Ya. Kanel-Belov, M. L. Kontsevich, “The Jacobian conjecture is stably equivalent to the Dixmier conjecture”, Mosc. Math. J., 7:2 (2007), 209–218 | MR | Zbl

[55] V. N. Davletshina, A. E. Mironov, On commuting ordinary differential operators with polynomial coefficients corresponding to spectral curves of genus two, 2016, 5 pp., arXiv: 1606.01346

[56] D. Masoero, “Poles of intégrale tritronquée and anharmonic oscillators. A WKB approach”, J. Phys. A, 43:9 (2010), 095201, 28 pp. | DOI | MR | Zbl

[57] D. V. Chudnovsky, G. V. Chudnovsky, “Explicit continued fractions and quantum gravity”, Acta Appl. Math., 36:1-2 (1994), 167–185 | DOI | MR | Zbl

[58] P. Dorey, R. Tateo, “On the relation between Stokes multipliers and the $T$–$Q$ systems of conformal field theory”, Nuclear Phys. B, 563:3 (1999), 573–602 | DOI | MR | Zbl

[59] V. G. Drinfeld, V. V. Sokolov, “Simmetrii v uravneniyakh Laksa”, Integriruemye sistemy, Bashk. fil. AN SSSR, Ufa, 1982, 3–22 | Zbl