Distributions of polynomials on multidimensional and infinite-dimensional spaces with measures
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 71 (2016) no. 4, pp. 703-749 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper provides a survey of recent investigations connected with distributions of polynomials on multi- and infinite-dimensional spaces with measures. The most important results on estimates (independent of the number of variables) for distribution functions and integral norms and also on convergence of the distributions of polynomials in variation and in the Kantorovich metric are presented. Interesting open problems in this area at the junction of the theory of functions, probability theory, and measure theory are discussed. Bibliography: 131 titles.
Keywords: polynomials, distribution function, measurable polynomials, Gaussian measure, convex measure, logarithmically concave measure, Kantorovich metric.
Mots-clés : convergence in variation
@article{RM_2016_71_4_a1,
     author = {V. I. Bogachev},
     title = {Distributions of polynomials on multidimensional and infinite-dimensional spaces with measures},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {703--749},
     year = {2016},
     volume = {71},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2016_71_4_a1/}
}
TY  - JOUR
AU  - V. I. Bogachev
TI  - Distributions of polynomials on multidimensional and infinite-dimensional spaces with measures
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2016
SP  - 703
EP  - 749
VL  - 71
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/RM_2016_71_4_a1/
LA  - en
ID  - RM_2016_71_4_a1
ER  - 
%0 Journal Article
%A V. I. Bogachev
%T Distributions of polynomials on multidimensional and infinite-dimensional spaces with measures
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2016
%P 703-749
%V 71
%N 4
%U http://geodesic.mathdoc.fr/item/RM_2016_71_4_a1/
%G en
%F RM_2016_71_4_a1
V. I. Bogachev. Distributions of polynomials on multidimensional and infinite-dimensional spaces with measures. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 71 (2016) no. 4, pp. 703-749. http://geodesic.mathdoc.fr/item/RM_2016_71_4_a1/

[1] E. Remes, “Sur une propriété extrémale des polynômes de Tchebyscheff”, Zap. Nauch.-issled. in-ta matem. i mekh. Khark. un-ta i Khark. matem. o-va (4), 13:1 (1936), 93–95 | Zbl

[2] Yu. A. Brudnyĭ, M. I. Ganzburg, “On an extremal problem for polynomials in $n$ variables”, Math. USSR-Izv., 7:2 (1973), 345–356 | DOI | MR | Zbl

[3] J. Bourgain, “On the distribution of polynomials on high dimensional convex sets”, Geometric aspects of functional analysis, Israel Seminar (GAFA) 1989–1990, Lecture Notes in Math., 1469, Springer, Berlin, 1991, 127–137 | DOI | MR | Zbl

[4] S. G. Bobkov, “Remarks on the growth of $L^p$-norms of polynomials”, Geometric aspects of functional analysis, Israel Seminar 1996–2000, Lecture Notes in Math., 1745, Springer, Berlin, 2000, 27–35 | DOI | MR | Zbl

[5] S. G. Bobkov, “Some generalizations of Prokhorov's results on Khinchin-type inequalities for polynomials”, Theory Probab. Appl., 45:4 (2001), 644–647 | DOI | DOI | MR | Zbl

[6] L. Lovász, M. Simonovits, “Random walks in a convex body and an improved volume algorithm”, Random Structures Algorithms, 4:4 (1993), 359–412 | DOI | MR | Zbl

[7] R. Kannan, L. Lovász, M. Simonovits, “Isoperimetric problems for convex bodies and a localization lemma”, Discrete Comput. Geom., 13:3-4 (1995), 541–559 | DOI | MR | Zbl

[8] A. Carbery, J. Wright, “Distributional and $L^q$ norm inequalities for polynomials over convex bodies in $\mathbb R^n$”, Math. Res. Lett., 8:3 (2001), 233–248 | DOI | MR | Zbl

[9] F. Nazarov, M. Sodin, A. Volberg, “The geometric Kannan–Lovász–Simonovits lemma, dimension-free estimates for the distribution of the values of polynomials, and the distribution of the zeros of random analytic functions”, St. Petersburg Math. J., 14:2 (2003), 351–366 | MR | Zbl

[10] Y. Hu, D. Nualart, S. Tindel, F. Xu, “Density convergence in the Breuer–Major theorem for Gaussian stationary sequences”, Bernoulli, 21:4 (2015), 2336–2350 | DOI | MR | Zbl

[11] I. Nourdin, D. Nualart, G. Poly, “Absolute continuity and convergence of densities for random vectors on Wiener chaos”, Electron. J. Probab., 18 (2013), 22, 19 pp. | DOI | MR | Zbl

[12] I. Nourdin, G. Peccati, “Noncentral convergence of multiple integrals”, Ann. Probab., 37:4 (2009), 1412–1426 | DOI | MR | Zbl

[13] I. Nourdin, G. Peccati, “Stein's method on Wiener chaos”, Probab. Theory Related Fields, 145:1-2 (2009), 75–118 | DOI | MR | Zbl

[14] I. Nourdin, G. Peccati, Normal approximations with Malliavin calculus. From Stein's method to universality, Cambridge Tracts in Math., 192, Cambridge Univ. Press, Cambridge, 2012, xiv+239 pp. | DOI | MR | Zbl

[15] I. Nourdin, G. Peccati, “The optimal fourth moment theorem”, Proc. Amer. Math. Soc., 143:7 (2015), 3123–3133 | DOI | MR | Zbl

[16] I. Nourdin, G. Peccati, G. Reinert, “Invariance principles for homogeneous sums: universality of Gaussian Wiener chaos”, Ann. Probab., 38:5 (2010), 1947–1985 | DOI | MR | Zbl

[17] I. Nourdin, G. Poly, “Convergence in law in the second Wiener/Wigner chaos”, Electron. Commun. Probab., 17 (2012), paper No 36, 12 pp. | DOI | MR | Zbl

[18] I. Nourdin, G. Poly, “Convergence in total variation on Wiener chaos”, Stochastic Process. Appl., 123:2 (2013), 651–674 | DOI | MR | Zbl

[19] D. Nualart, S. Ortiz-Latorre, “Central limit theorems for multiple stochastic integrals and Malliavin calculus”, Stochastic Process. Appl., 118:4 (2008), 614–628 | DOI | MR | Zbl

[20] D. Nualart, G. Peccati, “Central limit theorems for sequences of multiple stochastic integrals”, Ann. Probab., 33:1 (2005), 177–193 | DOI | MR | Zbl

[21] G. Peccati, M. S. Taqqu, Wiener chaos: moments, cumulants and diagrams. A survey with computer implementation, Bocconi Springer Series, 1, Springer, Milan; Bocconi Univ. Press, Milan, 2011, xiv+274 pp. | DOI | MR | Zbl

[22] G. Peccati, C. A. Tudor, “Gaussian limits for vector-valued multiple stochastic integrals”, Séminaire de probabilités, v. XXXVIII, Lecture Notes in Math., 1857, Springer, Berlin, 2005, 247–262 | DOI | MR | Zbl

[23] L. M. Arutyunyan, “Isoperimetric inequality and the Poincaré inequality for distributions of polynomials on convex compact set”, Dokl. Math., 92:3 (2015), 689–690 | DOI | DOI | Zbl

[24] L. M. Arutyunyan, “Absolyutnaya nepreryvnost raspredelenii mnogochlenov na prostranstvakh s logarifmicheski vognutymi merami”, Matem. zametki, 2016 (to appear)

[25] L. M. Arutyunyan, E. D. Kosov, “Polynomials on spaces with logarithmically concave measures”, Dokl. Math., 91:1 (2015), 72–75 | DOI | DOI | MR | Zbl

[26] L. M. Arutyunyan, E. D. Kosov, “Estimates for integral norms of polynomials on spaces with convex measures”, Sb. Math., 206:8 (2015), 1030–1048 | DOI | DOI | MR | Zbl

[27] L. M. Arutyunyan, E. D. Kosov, Deviation of polynomials from their expectations and isoperimetry, 2016, 15 pp., arXiv: 1603.05308

[28] L. M. Arutyunyan, E. D. Kosov, I. S. Yaroslavtsev, “On some properties of polynomials measurable with respect to a Gaussian measure”, Dokl. Math., 90:1 (2014), 419–423 | DOI | DOI | MR | Zbl

[29] V. I. Bogachev, G. I. Zelenov, “On convergence in variation of weakly convergent multidimensional distributions”, Dokl. Math., 91:2 (2015), 138–141 | DOI | DOI | MR | Zbl

[30] V. I. Bogachev, G. I. Zelenov, E. D. Kosov, “Prinadlezhnost raspredelenii mnogochlenov k klassam Nikolskogo–Besova”, Dokl. RAN, 469:6 (2016), 651–655

[31] V. I. Bogachev, E. D. Kosov, G. I. Zelenov, Fractional smoothness of distributions of polynomials and a fractional analog of the Hardy–Landau–Littlewood inequality, 2016, 28 pp., arXiv: 1602.05207

[32] E. D. Kosov, “Lower estimates of measure of deviation of polynomials from mathematical expectations”, 92, no. 3, 2015, 698–700 | DOI | DOI | Zbl

[33] E. D. Kosov, Fractional smoothness of images of logarithmically concave measures under polynomials, 2016, 15 pp., arXiv: 1605.00162

[34] V. I. Bogachev, Gaussian measures, Math. Surveys Monogr., 62, Amer. Math. Soc., Providence, RI, 1998, xii+433 pp. | DOI | MR | Zbl

[35] C. Borell, “Convex measures on locally convex spaces”, Ark. Mat., 12 (1974), 239–252 | DOI | MR | Zbl

[36] A. Prékopa, “Logarithmic concave measures with application to stochastic programming”, Acta Sci. Math. (Szeged), 32 (1971), 301–316 | MR | Zbl

[37] V. I. Bogachev, Measure theory, v. I, II, Springer-Verlag, Berlin, 2007, xviii+500 pp., xiv+575 pp. | DOI | MR | Zbl

[38] V. I. Bogachev, Gaussovskie mery, Nauka, M., 1997, 352 pp. | MR | Zbl

[39] V. I. Bogachev, Differentiable measures and the Malliavin calculus, Math. Surveys Monogr., 164, Amer. Math. Soc., Providence, RI, 2010, xvi+488 pp. | DOI | MR | Zbl

[40] V. I. Bogachev, “Gaussian measures on infinite-dimensional spaces”, Real and stochastic analysis. Current trends, World Sci. Publ., Hackensack, NJ, 2014, 1–83 | DOI | MR | Zbl

[41] V. I. Bogachev, O. G. Smolyanov, V. I. Sobolev, Topologicheskie vektornye prostranstva i ikh prilozheniya, RKhD, M.–Izhevsk, 2012, 584 pp.

[42] P. Borwein, T. Erdélyi, Polynomials and polynomial inequalities, Grad. Texts in Math., 161, Springer-Verlag, New York, 1995, x+480 pp. | DOI | MR | Zbl

[43] G. V. Milovanović, D. S. Mitrinović, Th. M. Rassias, Topics in polynomials: extremal problems, inequalities, zeros, World Sci. Publ., River Edge, NJ, 1994, xiv+821 pp. | DOI | MR | Zbl

[44] R. M. Dudley, B. Randol, “Implications of pointwise bounds on polynomials”, Duke Math. J., 29:3 (1962), 455–458 | DOI | MR | Zbl

[45] T. Erdélyi, “Remez-type inequalities and their applications”, J. Comput. Appl. Math., 47:2 (1993), 167–209 | DOI | MR | Zbl

[46] M. I. Ganzburg, “Polynomial inequalities on measurable sets and their applications”, Constr. Approx., 17:2 (2001), 275–306 | DOI | MR | Zbl

[47] M. I. Ganzburg, “Polynomial inequalities on measurable sets and their applications. II. Weighted measures”, J. Approx. Theory, 106:1 (2000), 77–109 | DOI | MR | Zbl

[48] E. Crane, “The areas of polynomial images and pre-images”, Bull. London Math. Soc., 36:6 (2004), 786–792 | DOI | MR | Zbl

[49] R. Pierzchała, “Remez-type inequality on sets with cusps”, Adv. Math., 281 (2015), 508–552 | DOI | MR | Zbl

[50] A. Brudnyi, Y. Yomdin, “Norming sets and related Remez-type inequalities”, J. Aust. Math. Soc., 100:2 (2016), 163–181 | DOI | MR | Zbl

[51] A. Kroó, “On Remez-type inequalities for polynomials in $\mathbf R^m$ and $\mathbf C^m$”, Anal. Math., 27:1 (2001), 55–70 | DOI | MR | Zbl

[52] Y. Yomdin, “Remez-type inequality for discrete sets”, Israel J. Math., 186 (2011), 45–60 | DOI | MR | Zbl

[53] A. Brudnyi, “$L^q$ norm inequalities for analytic functions revisited”, J. Approx. Theory, 179 (2014), 24–32 | DOI | MR | Zbl

[54] Ch. O. Kiselman, “Ensembles de sous-niveau et images inverses des fonctions plurisousharmoniques”, Bull. Sci. Math., 124:1 (2000), 75–92 | DOI | MR | Zbl

[55] F. Nazarov, M. Sodin, A. Volberg, “Local dimension-free estimates for volumes of sublevel sets of analytic functions”, Israel J. Math., 133 (2003), 269–283 | DOI | MR | Zbl

[56] A. G. Vitushkin, O mnogomernykh variatsiyakh, Gostekhizdat, M., 1955, 220 pp. | MR

[57] M. Fradelizi, O. Guédon, “The extreme points of subsets of $s$-concave probabilities and a geometric localization theorem”, Discrete Comput. Geom., 31:2 (2004), 327–335 | DOI | MR | Zbl

[58] M. Fradelizi, O. Guédon, “A generalized localization theorem and geometric inequalities for convex bodies”, Adv. Math., 204:2 (2006), 509–529 | DOI | MR | Zbl

[59] S. G. Bobkov, J. Melbourne, “Hyperbolic measures on infinite dimensional spaces”, Probab. Surveys, 13 (2016), 57–88 ; (2014), 25 pp., arXiv: 1405.2961 | DOI | Zbl

[60] S. G. Bobkov, F. L. Nazarov, “Sharp dilation-type inequalities with fixed parameter of convexity”, Veroyatnost i statistika. 12, Zap. nauch. sem. POMI, 351, POMI, SPb., 2007, 54–78 ; S. G. Bobkov, F. L. Nazarov, “Sharp dilation-type inequalities with a fixed parameter of convexity”, J. Math. Sci. (N. Y.), 152:6 (2008), 826–839 | MR | Zbl | DOI

[61] S. G. Bobkov, J. Melbourne, “Localization for infinite-dimensional hyperbolic measures”, Dokl. Math., 91:3 (2015), 297–299 | DOI | DOI | MR | Zbl

[62] N. Wiener, “The homogeneous chaos”, Amer. J. Math., 60:4 (1938), 897–936 | DOI | MR | Zbl

[63] R. H. Cameron, W. T. Martin, “The orthogonal development of non-linear functionals in series of Fourier–Hermite functionals”, Ann. of Math. (2), 48:2 (1947), 385–392 | DOI | MR | Zbl

[64] K. Itô, “Multiple Wiener integral”, J. Math. Soc. Japan, 3 (1951), 157–169 | DOI | MR | Zbl

[65] I. E. Segal, “Tensor algebras over Hilbert spaces. I”, Trans. Amer. Math. Soc., 81:2 (1956), 106–134 | DOI | MR | Zbl

[66] R. L. Dobrushin, R. A. Minlos, “Polynomials in linear random functions”, Russian Math. Surveys, 32:2 (1977), 71–127 | DOI | MR | Zbl

[67] T. Hida, H.-H. Kuo, J. Potthoff, L. Streit, White noise. An infinite-dimensional calculus, Math. Appl., 253, Kluwer Acad. Publ., Dordrecht, 1993, xiv+516 pp. | DOI | MR | Zbl

[68] S. Janson, Gaussian Hilbert spaces, Cambridge Tracts in Math., 129, Cambridge Univ. Press, Cambridge, 1997, x+340 pp. | DOI | MR | Zbl

[69] M. Ledoux M., “Isoperimetry and Gaussian analysis”, Lectures on probability theory and statistics (Saint-Flour, 1994), Lecture Notes in Math., 1648, Springer, Berlin, 1996, 165–294 | DOI | MR | Zbl

[70] A. A. Dorogovtsev, “Measurable functionals and finitely absolutely continuous measures on Banach spaces”, Ukrainian Math. J., 52:9 (2000), 1366–1379 | DOI | MR | Zbl

[71] V. E. Berezhnoi, “Norm equivalence on the space of $\gamma$-measurable polynomials”, Moscow Univ. Math. Bull., 59:4 (2004), 37–39 | MR | Zbl

[72] B. V. Agafontsev, V. I. Bogachev, “Asymptotic properties of polynomials in Gaussian random variables”, Dokl. Math., 80:3 (2009), 806–809 | DOI | MR | Zbl

[73] R. Adamczak, “Logarithmic Sobolev inequalities and concentration of measure for convex functions and polynomial chaoses”, Bull. Pol. Acad. Sci. Math., 53:2 (2005), 221–238 | DOI | MR | Zbl

[74] R. Adamczak, P. Wolff, “Concentration inequalities for non-Lipschitz functions with bounded derivatives of higher order”, Probab. Theory Related Fields, 162:3-4 (2015), 531–586 | DOI | MR | Zbl

[75] R. Latała, “Estimates of moments and tails of Gaussian chaoses”, Ann. Probab., 34:6 (2006), 2315–2331 | DOI | MR | Zbl

[76] D. Carando, V. Dimant, D. Pinasco, “On the convergence of random polynomials and multilinear forms”, J. Funct. Anal., 261:8 (2011), 2135–2163 | DOI | MR | Zbl

[77] L. Larsson-Cohn, “$L^p$-norms of Hermite polynomials and an extremal problem on Wiener chaos”, Ark. Mat., 40:1 (2002), 133–144 | DOI | MR | Zbl

[78] M. Lifshits, Lectures on Gaussian processes, SpringerBriefs in Mathematics, Springer, Heidelberg, 2012, x+121 pp. | DOI | MR | Zbl

[79] G. V. Martynov, “Computation of distribution functions of quadratic forms of normally distributed random variables”, Theory Probab. Appl., 20:4 (1976), 782–793 | DOI | MR | Zbl

[80] A. I. Nazarov, Ya. Yu. Nikitin, “Exact $L_2$-small ball behavior of integrated Gaussian processes and spectral asymptotics of boundary value problems”, Probab. Theory Related Fields, 129:4 (2004), 469–494 | DOI | MR | Zbl

[81] Ya. Yu. Nikitin, R. S. Pusev, “Exact small deviation asymptotics for some Brownian functionals”, Theory Probab. Appl., 57:1 (2013), 60–81 | DOI | DOI | MR | Zbl

[82] A. M. Vershik, “Obschaya teoriya gaussovskikh mer v lineinykh prostranstvakh”, v state “Zasedaniya Leningradskogo matematicheskogo obschestva”, UMN, 19:1(115) (1964), 210–212

[83] O. G. Smolyanov, “Measurable polylinear and power functionals in certain linear spaces with a measure”, Soviet Math. Dokl., 7:5 (1966), 1242–1246 | Zbl

[84] K. Urbanik, “Random linear functionals and random integrals”, Colloq. Math., 33:2 (1975), 255–263 | MR | Zbl

[85] M. Kanter, “Random linear functionals and why we study them”, Vector space measures and applications (Univ. Dublin, Dublin, 1977), v. II, Lecture Notes in Math., 645, Springer, Berlin–New York, 1978, 114–123 | DOI | MR | Zbl

[86] A. V. Skorohod, “Linear and almost linear functionals on a measurable Hilbert space”, Theory Probab. Appl., 23:2 (1979), 380–385 | DOI | MR | Zbl

[87] L. M. Arutyunyan, I. S. Yaroslavtsev, “On measurable polynomials on infinite-dimensional spaces”, Dokl. Math., 87:2 (2013), 214–217 | DOI | DOI | MR | Zbl

[88] E. V. Yurova, “Continuous restrictions of measurable linear operators”, Dokl. Math., 85:2 (2012), 229–232 | DOI | MR | Zbl

[89] E. V. Yurova, “On continuous restrictions of measurable multilinear mappings”, Math. Notes, 98:6 (2015), 977–981 | DOI | DOI | MR | Zbl

[90] V. I. Bogachev, I. I. Malofeev, “On the distributions of smooth functions on infinite-dimensional spaces with measures”, Dokl. Math., 89:1 (2014), 5–7 | DOI | DOI | MR | Zbl

[91] M. Gromov, V. D. Milman, “Brunn theorem and a concentration of volume phenomena for symmetric convex bodies”, Israel seminar on geometric aspects of functional analysis (1983/84), Tel Aviv Univ., Tel Aviv, 1984, V, 12 pp. | MR | Zbl

[92] Yu. V. Prokhorov, “On polynomials in normally distributed random values”, Theory Probab. Appl., 37:4 (1993), 692–695 | DOI | MR | Zbl

[93] Yu. V. Prokhorov, “On polynomials in random variables with gamma-distribution”, Theory Probab. Appl., 38:1 (1993), 162–166 | DOI | MR | Zbl

[94] V. E. Berezhnoy, “On the equivalence of integral norms on the space of measurable polynomials with respect to a convex measure”, Theory Stoch. Process., 14:1 (2008), 7–10 | MR | Zbl

[95] S. G. Bobkov, “Large deviations and isoperimetry over convex probability measures with heavy tails”, Electron. J. Probab., 12 (2007), 39, 1072–1100 | DOI | MR | Zbl

[96] R. Adamczak, R. Latała, “Tail and moment estimates for chaoses generated by symmetric random variables with logarithmically concave tails”, Ann. Inst. H. Poincaré Probab. Statist., 48:4 (2012), 1103–1136 | DOI | MR | Zbl

[97] S. Brazitikos, A. Giannopoulos, P. Valettas, B.-H. Vritsiou, Geometry of isotropic convex bodies, Math. Surveys Monogr., 196, Amer. Math. Soc., Providence, RI, 2014, xx+594 pp. | DOI | MR | Zbl

[98] D. Alonso-Gutiérrez, J. Bastero, Approaching the Kannan–Lovász–Simonovits and variance conjectures, Lecture Notes in Math., 2131, Springer, Cham, 2015, x+148 pp. | DOI | MR | Zbl

[99] G. Paouris, “Concentration of mass on convex bodies”, Geom. Funct. Anal., 16:5 (2006), 1021–1049 | DOI | MR | Zbl

[100] R. Adamczak, R. Latała, A. E. Litvak, K. Oleszkiewicz, A. Pajor, N. Tomczak-Jaegermann, “A short proof of Paouris' inequality”, Canad. Math. Bull., 57:1 (2014), 3–8 | DOI | MR | Zbl

[101] G. Paouris, “Small ball probability estimates for log-concave measures”, Trans. Amer. Math. Soc., 364:1 (2012), 287–308 | DOI | MR | Zbl

[102] J. F. Treves, Lectures on linear partial differential equations with constant coefficients, Notas de Matemática, 27, Instituto de Matemática Pura e Aplicada do Conselho Nacional de Pesquisas, Rio de Janeiro, 1961, xiv+317 pp. | MR | Zbl | Zbl

[103] F. Götze, Yu. V. Prokhorov, V. V. Ulyanov, “Bounds for characteristic functions of polynomials in asymptotically normal random variables”, Russian Math. Surveys, 51:2 (1996), 181–204 | DOI | DOI | MR | Zbl

[104] F. Götze, Yu. V. Prokhorov, V. V. Ulyanov, “A stochastic analogue of the Vinogradov mean value theorem”, Probability theory and mathematical statistics (Tokyo, 1995), World Sci. Publ., River Edge, NJ, 1996, 62–82 | MR | Zbl

[105] F. Götze, Yu. V. Prokhorov, V. V. Ulyanov, “On smooth behavior of probability distributions under polynomial mappings”, Theory Probab. Appl., 42:1 (1998), 28–38 | DOI | DOI | MR | Zbl

[106] G. Christoph, Yu. Prohorov, V. Ulyanov, “Characterization and stability problems for finite quadratic forms”, Asymptotic methods in probability and statistics with applications (St. Petersburg, 1998), Stat. Ind. Technol., Birkhäuser Boston, Boston, MA, 2001, 39–50 | MR | Zbl

[107] A. A. Kulikova, Yu. V. Prokhorov, “Uniform distributions on convex sets: inequality for characteristic functions”, Theory Probab. Appl., 47:4 (2003), 700–701 | DOI | DOI | MR | Zbl

[108] A. V. Uglanov, “On the division of generalized functions of an infinite number of variables by polynomials”, Soviet Math. Dokl., 25:3 (1982), 843–846 | MR | Zbl

[109] V. I. Bogachev, “Differential properties of measures on infinite dimensional spaces and the Malliavin calculus”, Acta Univ. Carolin. Math. Phys., 30:2 (1989), 9–30 | MR | Zbl

[110] V. Bogachev, “Polynômes et intégrales oscillantes sur espaces de dimension infinie”, C. R. Acad. Sci. Paris Sér. I Math., 311:12 (1990), 807–812 | MR | Zbl

[111] V. I. Bogachev, O. G. Smolyanov, “Analytic properties of infinite dimensional distributions”, Russian Math. Surveys, 45:3 (1990), 1–104 | DOI | MR | Zbl

[112] V. I. Bogachev, “Functionals of random processes and infinite-dimensional oscillatory integrals connected with them”, Russian Acad. Sci. Izv. Math., 40:2 (1993), 235–266 | DOI | MR | Zbl

[113] S. Kusuoka, “On the absolute continuity of the law of a system of multiple Wiener integral”, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 30:1 (1983), 191–197 | MR | Zbl

[114] I. Shigekawa, “Derivatives of Wiener functionals and absolute continuity of induced measures”, J. Math. Kyoto Univ., 20:2 (1980), 263–289 | MR | Zbl

[115] Yu. A. Davydov, “On distributions of multiple Wiener–Itô integrals”, Theory Probab. Appl., 35:1 (1990), 27–37 | DOI | MR | Zbl

[116] O. V. Besov, V. P. Il'in, S. M. Nikol'ski{ĭ}, Integral representations of functions and imbedding theorems, v. I, II, Scripta Series in Mathematics, V. H. Winston Sons, Washington, DC; Halsted Press [John Wiley Sons], New York–Toronto, ON–London, 1978, 1979, viii+345 pp., viii+311 pp. | MR | Zbl | Zbl

[117] S. M. Nikol'ski{ĭ}, Approximation of functions of several variables and imbedding theorems, Grundlehren Math. Wiss., 205, Springer-Verlag, New York–Heidelberg, 1975, viii+418 pp. | DOI | MR | MR | Zbl | Zbl

[118] L. V. Kantorovich, G. Sh. Rubinshtein, “Ob odnom prostranstve vpolne additivnykh funktsii mnozhestva”, Vestn. LGU, 13:7 (1958), 52–59 | MR | Zbl

[119] R. Fortet, E. Mourier, “Convergence de la répartition empirique vers la répartition théorique”, Ann. Sci. Ecole Norm. Sup. (3), 70:3 (1953), 267–285 | MR | Zbl

[120] V. I. Bogachev, A. V. Kolesnikov, “The Monge–Kantorovich problem: achievements, connections, and perspectives”, Russian Math. Surveys, 67:5 (2012), 785–890 | DOI | DOI | MR | Zbl

[121] G. H. Hardy, E. Landau, J. E. Littlewood, “Some inequalities satisfied by the integrals or derivatives of real or analytic functions”, Math. Z., 39:1 (1935), 677–695 | DOI | MR | Zbl

[122] V. I. Bogachev, A. V. Shaposhnikov, “Lower bounds for the Kantorovich distance”, Dokl. Math., 91:1 (2015), 91–93 | DOI | DOI | MR | Zbl

[123] V. I. Bogachev, F.-Y. Wang, A. V. Shaposhnikov, “Estimates of the Kantorovich norm on manifolds”, Dokl. Math., 92:1 (2015), 494–499 | DOI | DOI | MR | Zbl

[124] R. V. Kohn, F. Otto, “Upper bounds on coarsening rates”, Comm. Math. Phys., 229:3 (2002), 375–395 | DOI | MR | Zbl

[125] C. Seis, “Maximal mixing by incompressible fluid flows”, Nonlinearity, 26:12 (2013), 3279–3289 | DOI | MR | Zbl

[126] Yu. A. Davydov, G. V. Martynova, “Predelnoe povedenie raspredelenii kratnykh stokhasticheskikh integralov”, Statistika i upravlenie sluchainymi protsessami, Sbornik statei, Nauka, M., 1989, 55–57 | MR | Zbl

[127] B. A. Sevastyanov, “A class of limit distributions for quadratic forms of normal stochastic variables”, Theory Probab. Appl., 6 (1961), 337–340

[128] M. Arcones, “The class of Gaussian chaos of order two is closed by taking limits in distribution”, Advances in stochastic inequalities (Atlanta, GA, 1997), Contemp. Math., 234, Amer. Math. Soc., Providence, RI, 1999, 13–19 | DOI | MR | Zbl

[129] C. A. Tudor, “The determinant of the Malliavin matrix and the determinant of the covariance matrix for multiple integrals”, ALEA Lat. Am. J. Probab. Math. Statist., 10:2 (2013), 681–692 | MR | Zbl

[130] V. I. Bogachev, E. D. Kosov, I. Nourdin, G. Poly, “Two properties of vectors of quadratic forms in Gaussian random variables”, Theory Probab. Appl., 59:2 (2015), 208–221 | DOI | DOI | MR | Zbl

[131] I. Nourdin, D. Nualart, G. Peccati, “Strong asymptotic independence on Wiener chaos”, Proc. Amer. Math. Soc., 144:2 (2016), 875–886 | DOI | MR | Zbl