Mots-clés : Schur multipliers, Besov classes
@article{RM_2016_71_4_a0,
author = {A. B. Aleksandrov and V. V. Peller},
title = {Operator {Lipschitz} functions},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {605--702},
year = {2016},
volume = {71},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2016_71_4_a0/}
}
A. B. Aleksandrov; V. V. Peller. Operator Lipschitz functions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 71 (2016) no. 4, pp. 605-702. http://geodesic.mathdoc.fr/item/RM_2016_71_4_a0/
[1] N. I. Achieser, Vorlesungen über Approximationstheorie, Math. Lehrbücher und Monogr., II, Akademie-Verlag, Berlin, 1967, xiii+412 pp. | MR | MR | Zbl | Zbl
[2] A. B. Aleksandrov, “Operator Lipschitz functions and linear fractional transformations”, J. Math. Sci. (N. Y.), 194:6 (2013), 603–627 | DOI | MR | Zbl
[3] A. B. Aleksandrov, “Operator Lipschitz functions and model spaces”, J. Math. Sci. (N. Y.), 202:4 (2014), 485–518 | DOI | Zbl
[4] A. B. Aleksandrov, “Operator Lipschitz functions in several variables and Möbius transformations”, J. Math. Sci. (N. Y.), 209:5 (2015), 665–682 | DOI | Zbl
[5] A. B. Aleksandrov, “Kommutatorno lipshitsevy funktsii i analiticheskoe prodolzhenie”, Issledovaniya po lineinym operatoram i teorii funktsii. 43, Zap. nauch. sem. POMI, 434, POMI, SPb., 2015, 5–18
[6] A. Aleksandrov, F. Nazarov, V. Peller, “Triple operator integrals in Schatten–von Neumann norms and functions of perturbed noncommuting operators”, C. R. Math. Acad. Sci. Paris, 353:8 (2015), 723–728 | DOI | MR | Zbl
[7] A. Aleksandrov, V. Peller, “Functions of perturbed operators”, C. R. Math. Acad. Sci. Paris, 347:9-10 (2009), 483–488 | DOI | MR | Zbl
[8] A. B. Aleksandrov, V. V. Peller, “Operator Hölder–Zygmund functions”, Adv. Math., 224:3 (2010), 910–966 | DOI | MR | Zbl
[9] A. B. Aleksandrov, V. V. Peller, “Functions of operators under perturbations of class $\mathbf{S}_p$”, J. Funct. Anal., 258:11 (2010), 3675–3724 | DOI | MR | Zbl
[10] A. B. Aleksandrov, V. V. Peller, “Functions of perturbed unbounded self-adjoint operators. Operator Bernstein type inequalities”, Indiana Univ. Math. J., 59:4 (2010), 1451–1490 | DOI | MR | Zbl
[11] A. B. Aleksandrov, V. V. Peller, “Estimates of operator moduli of continuity”, J. Funct. Anal., 261:10 (2011), 2741–2796 | DOI | MR | Zbl
[12] A. B. Aleksandrov, V. V. Peller, “Functions of perturbed dissipative operators”, St. Petersburg Math. J., 23:2 (2012), 209–238 | DOI | MR | Zbl
[13] A. B. Aleksandrov, V. V. Peller, “Operator and commutator moduli of continuity for normal operators”, Proc. Lond. Math. Soc. (3), 105:4 (2012), 821–851 | DOI | MR | Zbl
[14] A. B. Aleksandrov, V. V. Peller, D. S. Potapov, F. A. Sukochev, “Functions of normal operators under perturbations”, Adv. Math., 226:6 (2011), 5216–5251 | DOI | MR | Zbl
[15] J. Arazy, T. J. Barton, Y. Friedman, “Operator differentiable functions”, Integral Equations Operator Theory, 13:4 (1990), 461–487 | DOI | MR | Zbl
[16] G. Bennett, “Schur multipliers”, Duke Math. J., 44:3 (1977), 603–639 | DOI | MR | Zbl
[17] S. K. Berberian, “Note on a theorem of Fuglede and Putnam”, Proc. Amer. Math. Soc., 10:2 (1959), 175–182 | DOI | MR | Zbl
[18] S. N. Bernshtein, “Rasprostranenie neravenstva S. B. Stechkina na tselye funktsii konechnoi stepeni”, Dokl. AN SSSR, 60:9 (1948), 1487–1490 | MR | Zbl
[19] M. Sh. Birman, M. Z. Solomyak, “Dvoinye operatornye integraly Stiltesa”, Spektralnaya teoriya i volnovye protsescy, Probl. matem. fiz., 1, LGU, L., 1966, 33–67 | MR | Zbl
[20] M. Sh. Birman, M. Z. Solomyak, “Dvoinye operatornye integraly Stiltesa. II”, Spektralnaya teoriya, problemy difraktsii, Probl. matem. fiz., 2, LGU, L., 1967, 26–60 | MR | Zbl
[21] M. Sh. Birman, M. Z. Solomyak, “Dvoinye operatornye integraly Stiltesa. III. Predelnyi perekhod pod znakom integrala”, Teoriya funktsii. Spektralnaya teoriya. Rasprostranenie voln, Probl. matem. fiz., 6, LGU, L., 1973, 27–53 | MR | Zbl
[22] M. Birman, M. Solomyak, “Tensor product of a finite number of spectral measures is always a spectral measure”, Integral Equations Operator Theory, 24:2 (1996), 179–187 | DOI | MR | Zbl
[23] Yu. L. Daletskii, S. G. Krein, “Integrirovanie i differentsirovanie funktsii ermitovykh operatorov i prilozheniya k teorii vozmuschenii”, Trudy seminara po funkts. analizu, 1, VGU, Voronezh, 1956, 81–105 | Zbl
[24] V. K. Dzyadyk, Vvedenie v teoriyu ravnomernogo priblizheniya funktsii polinomami, Nauka, M., 1977, 511 pp. | MR | Zbl
[25] Yu. B. Farforovskaya, “O svyazi metriki Kantorovicha–Rubinshteina dlya spektralnykh razlozhenii samosopryazhennykh operatorov s funktsiyami ot operatorov”, Vestn. Leningr. un-ta. Matem., mekh., astronom., 1968, no. 4, 94–97 | Zbl
[26] Yu. B. Farforovskaya, “Example of a Lipschitz function of self-adjoint operators that gives a nonnuclear increment under a nuclear perturbation”, J. Soviet Math., 4:4 (1975), 426–433 | DOI | MR | Zbl
[27] M. Frazier, B. Jawerth, “A discrete transform and decompositions of distribution spaces”, J. Funct. Anal., 93 (1990), 34–170 | DOI | MR | Zbl
[28] I. C. Gohberg, M. G. Kreĭn, Introduction to the theory of linear nonselfadjoint operators, Transl. Math. Monogr., 18, Amer. Math. Soc., Providence, RI, 1969, xv+378 pp. | MR | MR | Zbl | Zbl
[29] G. H. Hardy, W. W. Rogosinski, Fourier series, Cambridge Tracts in Math. and Math. Phys., 38, Cambridge Univ. Press, Cambridge, 1944, 100 pp. | MR | Zbl | Zbl
[30] H. Hedenmalm, B. Korenblum, K. Zhu, Theory of Bergman spaces, Grad. Texts in Math., 199, Springer-Verlag, New York, 2000, x+286 pp. | DOI | MR | Zbl
[31] K. Hoffman, Banach spaces of analytic functions, Prentice-Hall Series in Modern Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1962, xiii+217 pp. | MR | Zbl | Zbl
[32] B. E. Johnson, J. P. Williams, “The range of a normal derivation”, Pacific J. Math., 58:1 (1975), 105–122 | DOI | MR | Zbl
[33] H. M. Kamowitz, “On operators whose spectrum lies on a circle or a line”, Pacific J. Math., 20 (1967), 65–68 | DOI | MR | Zbl
[34] T. Kato, “Continuity of the map $S\mapsto |S| $ for linear operators”, Proc. Japan Acad., 49:3 (1973), 157–160 | DOI | MR | Zbl
[35] E. Kissin, D. Potapov, V. Shulman, F. Sukochev, “Operator smoothness in Schatten norms for functions of several variables: Lipschitz conditions, differentiability and unbounded derivations”, Proc. Lond. Math. Soc. (3), 105:4 (2012), 661–702 | DOI | MR | Zbl
[36] E. Kissin, V. S. Shulman, “On a problem of J. P. Williams”, Proc. Amer. Math. Soc., 130:12 (2002), 3605–3608 | DOI | MR | Zbl
[37] E. Kissin, V. S. Shulman, “Classes of operator-smooth functions. II. Operator-differentiable functions”, Integral Equations Operator Theory, 49:2 (2004), 165–210 | DOI | MR | Zbl
[38] E. Kissin, V. S. Shulman, “Classes of operator-smooth functions. I. Operator-Lipschitz functions”, Proc. Edinb. Math. Soc. (2), 48:1 (2005), 151–173 | DOI | MR | Zbl
[39] E. Kissin, V. S. Shulman, “On fully operator Lipschitz functions”, J. Funct. Anal., 253:2 (2007), 711–728 | DOI | MR | Zbl
[40] F. Kittaneh, “On Lipschitz functions of normal operators”, Proc. Amer. Math. Soc., 94:3 (1985), 416–418 | DOI | MR | Zbl
[41] M. G. Krein, “O formule sledov v teorii vozmuschenii”, Matem. sb., 33(75):3 (1953), 597–626 | MR | Zbl
[42] B. Ya. Levin, Lectures on entire functions, Transl. Math. Monogr., 150, Amer. Math. Soc., Providence, RI, 1996, xvi+248 pp. | MR | Zbl
[43] I. M. Lifshits, “Ob odnoi zadache teorii vozmuschenii, svyazannoi s kvantovoi statistikoi”, UMN, 7:1(47) (1952), 171–180 | MR | Zbl
[44] M. M. Malamud, S. M. Malamud, “Spectral theory of operator measures in Hilbert space”, St. Petersburg Math. J., 15:3 (2004), 323–373 | DOI | MR | Zbl
[45] A. McIntosh, “Counterexample to a question on commutators”, Proc. Amer. Math. Soc., 29:2 (1971), 337–340 | DOI | MR | Zbl
[46] M. A. Naimark, “Spektralnye funktsii simmetricheskogo operatora”, Izv. AN SSSR. Ser. matem., 4:3 (1940), 277–318 | MR | Zbl
[47] I. P. Natanson, Konstruktive Funktionentheorie, Akademie-Verlag, Berlin, 1955, xiv+515 pp. | MR | MR | Zbl | Zbl
[48] F. L. Nazarov, V. V. Peller, “Functions of perturbed $n$-tuples of commuting self-adjoint operators”, J. Funct. Anal., 266:8 (2014), 5398–5428 | DOI | MR | Zbl
[49] L. N. Nikol'skaya, Yu. B. Farforovskaya, “Hölder functions are operator-Hölder”, St. Petersburg Math. J., 22:4 (2011), 657–668 | DOI | MR | Zbl
[50] N. K. Nikol'skii, Treatise on the shift operator. Spectral function theory, Grundlehren Math. Wiss., 273, Springer-Verlag, Berlin, 1986, xii+491 pp. | DOI | MR | MR | Zbl | Zbl
[51] N. K. Nikolski, Operators, functions, and systems: an easy reading, v. 1, Math. Surveys Monogr., 92, Hardy, Hankel, and Toeplitz, Amer. Math. Soc., Providence, RI, 2002, xiv+461 pp. | MR | Zbl
[52] J. Peetre, New thoughts on Besov spaces, Duke University Mathematics Series, 1, Mathematics Department, Duke University, Durham, NC, 1976, vi+305 pp. | MR | Zbl
[53] A. A. Pekarskii, “Classes of analytic functions determined by best rational approximations in $H_p$”, Math. USSR-Sb., 55:1 (1986), 1–18 | DOI | MR | Zbl
[54] V. V. Peller, “Hankel operators of class $\mathfrak S_p$ and their applications (rational approximation, Gaussian processes, the problem of majorizing operators)”, Math. USSR-Sb., 41:4 (1982), 443–479 | DOI | MR | Zbl
[55] V. V. Peller, “A description of Hankel operators of class $\mathfrak S_p$ for $p>0$, an investigation of the rate of rational approximation, and other applications”, Math. USSR-Sb., 50:2 (1985), 465–494 | DOI | MR | Zbl
[56] V. V. Peller, “Hankel operators in the perturbation theory of unitary and self-adjoint operators”, Funct. Anal. Appl., 19:2 (1985), 111–123 | DOI | MR | Zbl
[57] V. V. Peller, “For which $f$ does $A-B\in \mathbf{S}_{p}$ imply that $f(A)-f(B)\in \mathbf{S}_{p}$?”, Operators in indefinite metric spaces, scattering theory and other topics (Bucharest, 1985), Oper. Theory Adv. Appl., 24, Birkhäuser, Basel, 1987, 289–294 | MR | Zbl
[58] V. V. Peller, “Hankel operators in the perturbation theory of unbounded self-adjoint operators”, Analysis and partial differential equations, Lecture Notes in Pure and Appl. Math., 122, Dekker, New York, 1990, 529–544 | MR | Zbl
[59] V. V. Peller, “Functional calculus for a pair of almost commuting selfadjoint operators”, J. Funct. Anal., 112:2 (1993), 325–345 | DOI | MR | Zbl
[60] V. V. Peller, Hankel operators and their applications, Springer Monogr. Math., Springer-Verlag, New York, 2003, xvi+784 pp. | DOI | MR | Zbl
[61] V. V. Peller, “Multiple operator integrals and higher operator derivatives”, J. Funct. Anal., 233:2 (2006), 515–544 | DOI | MR | Zbl
[62] V. V. Peller, “Differentiability of functions of contractions”, Linear and complex analysis, Amer. Math. Soc. Transl. Ser. 2, 226, Amer. Math. Soc., Providence, RI, 2009, 109–131 | MR | Zbl
[63] V. V. Peller, “Multiple operator integrals in perturbation theory”, Bull. Math. Sci., 6:1 (2016), 15–88 | DOI | MR | Zbl
[64] V. Peller, The Lifshits–Krein trace formula and operator Lipschitz functions, 2016, 9 pp., arXiv: 1601.00490
[65] G. Pisier, Similarity problems and completely bounded maps, Includes the solution to “The Halmos problem”, Lecture Notes in Math., 1618, 2nd, expanded ed., Springer-Verlag, Berlin, 2001, viii+198 pp. | DOI | MR | Zbl
[66] G. Pisier, “Grothendieck's theorem, past and present”, Bull. Amer. Math. Soc. (N. S.), 49:2 (2012), 237–323 | DOI | MR | Zbl
[67] D. Potapov, F. Sukochev, “Operator-Lipschitz functions in Schatten–von Neumann classes”, Acta Math., 207:2 (2011), 375–389 | DOI | MR | Zbl
[68] W. Rudin, Functional analysis, McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., 1973, xiii+397 pp. | MR | MR | Zbl
[69] S. Semmes, “Trace ideal criteria for Hankel operators, and applications to Besov spaces”, Integral Equations Operator Theory, 7:2 (1984), 241–281 | DOI | MR | Zbl
[70] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Math. Ser., 30, Princeton Univ. Press, Princeton, NJ, 1970, xiv+290 pp. | MR | MR | Zbl | Zbl
[71] E. M. Stein, G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Math. Ser., 32, Princeton Univ. Press, Princeton, NJ, 1971, x+297 pp. | MR | Zbl | Zbl
[72] B. Sz.-Nagy, C. Foiaş, Analyse harmonique des opérateurs de l'espace de Hilbert, Akadémiaí Kiadó, Budapest; Masson et Cie, Paris, 1967, xi+373 pp. | MR | Zbl | Zbl
[73] A. F. Timan, Theory of approximation of functions of a real variable, Internat. Ser. Monogr. Pure Appl. Math., 34, A Pergamon Press Book. The Macmillan Co., New York, 1963, xii+631 pp. | MR | MR | Zbl
[74] H. Triebel, Theory of function spaces, Monogr. Math., 78, Birkhäuser Verlag, Basel–Boston–Stuttgart, 1983, x+285 pp. | DOI | MR | Zbl | Zbl
[75] H. Widom, “When are differentiable functions differentiable?”, Linear and complex analysis. Problem book. 199 research problems, Lecture Notes in Math., 1043, Springer-Verlag, Berlin, 1984, 184–188
[76] J. P. Williams, “Derivation ranges: open problems”, Topics in modern operator theory (Timişoara/Herculane, 1980), Operator Theory: Adv. Appl., 2, Birkhäuser, Basel–Boston, MA, 1981, 319–328 | MR | Zbl
[77] K. Yosida, Functional analysis, Grundlehren Math. Wiss., 123, Academic Press, Inc., New York; Springer-Verlag, Berlin, 1965, xi+458 pp. | MR | MR | Zbl | Zbl