Operator Lipschitz functions
    
    
  
  
  
      
      
      
        
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 71 (2016) no. 4, pp. 605-702
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The goal of this survey is a comprehensive study of operator Lipschitz functions. A continuous function $f$ on the real line $\mathbb{R}$ is said to be operator Lipschitz if $\|f(A)-f(B)\|\leqslant\mathrm{const}\|A-B\|$ for arbitrary self-adjoint operators $A$ and $B$. Sufficient conditions and necessary conditions are given for operator Lipschitzness. The class of operator differentiable functions on $\mathbb{R}$ is also studied. Further, operator Lipschitz functions on closed subsets of the plane are considered, and the class of commutator Lipschitz functions on such subsets is introduced. An important role for the study of such classes of functions is played by double operator integrals and Schur multipliers.
Bibliography: 77 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
functions of operators, operator Lipschitz functions, operator differentiable functions, self-adjoint operators, normal operators, divided differences, double operator integrals, linear-fractional transformations, Carleson measures.
Mots-clés : Schur multipliers, Besov classes
                    
                  
                
                
                Mots-clés : Schur multipliers, Besov classes
@article{RM_2016_71_4_a0,
     author = {A. B. Aleksandrov and V. V. Peller},
     title = {Operator {Lipschitz} functions},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {605--702},
     publisher = {mathdoc},
     volume = {71},
     number = {4},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2016_71_4_a0/}
}
                      
                      
                    A. B. Aleksandrov; V. V. Peller. Operator Lipschitz functions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 71 (2016) no. 4, pp. 605-702. http://geodesic.mathdoc.fr/item/RM_2016_71_4_a0/
