Operator Lipschitz functions
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 71 (2016) no. 4, pp. 605-702 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The goal of this survey is a comprehensive study of operator Lipschitz functions. A continuous function $f$ on the real line $\mathbb{R}$ is said to be operator Lipschitz if $\|f(A)-f(B)\|\leqslant\mathrm{const}\|A-B\|$ for arbitrary self-adjoint operators $A$ and $B$. Sufficient conditions and necessary conditions are given for operator Lipschitzness. The class of operator differentiable functions on $\mathbb{R}$ is also studied. Further, operator Lipschitz functions on closed subsets of the plane are considered, and the class of commutator Lipschitz functions on such subsets is introduced. An important role for the study of such classes of functions is played by double operator integrals and Schur multipliers. Bibliography: 77 titles.
Keywords: functions of operators, operator Lipschitz functions, operator differentiable functions, self-adjoint operators, normal operators, divided differences, double operator integrals, linear-fractional transformations, Carleson measures.
Mots-clés : Schur multipliers, Besov classes
@article{RM_2016_71_4_a0,
     author = {A. B. Aleksandrov and V. V. Peller},
     title = {Operator {Lipschitz} functions},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {605--702},
     year = {2016},
     volume = {71},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2016_71_4_a0/}
}
TY  - JOUR
AU  - A. B. Aleksandrov
AU  - V. V. Peller
TI  - Operator Lipschitz functions
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2016
SP  - 605
EP  - 702
VL  - 71
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/RM_2016_71_4_a0/
LA  - en
ID  - RM_2016_71_4_a0
ER  - 
%0 Journal Article
%A A. B. Aleksandrov
%A V. V. Peller
%T Operator Lipschitz functions
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2016
%P 605-702
%V 71
%N 4
%U http://geodesic.mathdoc.fr/item/RM_2016_71_4_a0/
%G en
%F RM_2016_71_4_a0
A. B. Aleksandrov; V. V. Peller. Operator Lipschitz functions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 71 (2016) no. 4, pp. 605-702. http://geodesic.mathdoc.fr/item/RM_2016_71_4_a0/

[1] N. I. Achieser, Vorlesungen über Approximationstheorie, Math. Lehrbücher und Monogr., II, Akademie-Verlag, Berlin, 1967, xiii+412 pp. | MR | MR | Zbl | Zbl

[2] A. B. Aleksandrov, “Operator Lipschitz functions and linear fractional transformations”, J. Math. Sci. (N. Y.), 194:6 (2013), 603–627 | DOI | MR | Zbl

[3] A. B. Aleksandrov, “Operator Lipschitz functions and model spaces”, J. Math. Sci. (N. Y.), 202:4 (2014), 485–518 | DOI | Zbl

[4] A. B. Aleksandrov, “Operator Lipschitz functions in several variables and Möbius transformations”, J. Math. Sci. (N. Y.), 209:5 (2015), 665–682 | DOI | Zbl

[5] A. B. Aleksandrov, “Kommutatorno lipshitsevy funktsii i analiticheskoe prodolzhenie”, Issledovaniya po lineinym operatoram i teorii funktsii. 43, Zap. nauch. sem. POMI, 434, POMI, SPb., 2015, 5–18

[6] A. Aleksandrov, F. Nazarov, V. Peller, “Triple operator integrals in Schatten–von Neumann norms and functions of perturbed noncommuting operators”, C. R. Math. Acad. Sci. Paris, 353:8 (2015), 723–728 | DOI | MR | Zbl

[7] A. Aleksandrov, V. Peller, “Functions of perturbed operators”, C. R. Math. Acad. Sci. Paris, 347:9-10 (2009), 483–488 | DOI | MR | Zbl

[8] A. B. Aleksandrov, V. V. Peller, “Operator Hölder–Zygmund functions”, Adv. Math., 224:3 (2010), 910–966 | DOI | MR | Zbl

[9] A. B. Aleksandrov, V. V. Peller, “Functions of operators under perturbations of class $\mathbf{S}_p$”, J. Funct. Anal., 258:11 (2010), 3675–3724 | DOI | MR | Zbl

[10] A. B. Aleksandrov, V. V. Peller, “Functions of perturbed unbounded self-adjoint operators. Operator Bernstein type inequalities”, Indiana Univ. Math. J., 59:4 (2010), 1451–1490 | DOI | MR | Zbl

[11] A. B. Aleksandrov, V. V. Peller, “Estimates of operator moduli of continuity”, J. Funct. Anal., 261:10 (2011), 2741–2796 | DOI | MR | Zbl

[12] A. B. Aleksandrov, V. V. Peller, “Functions of perturbed dissipative operators”, St. Petersburg Math. J., 23:2 (2012), 209–238 | DOI | MR | Zbl

[13] A. B. Aleksandrov, V. V. Peller, “Operator and commutator moduli of continuity for normal operators”, Proc. Lond. Math. Soc. (3), 105:4 (2012), 821–851 | DOI | MR | Zbl

[14] A. B. Aleksandrov, V. V. Peller, D. S. Potapov, F. A. Sukochev, “Functions of normal operators under perturbations”, Adv. Math., 226:6 (2011), 5216–5251 | DOI | MR | Zbl

[15] J. Arazy, T. J. Barton, Y. Friedman, “Operator differentiable functions”, Integral Equations Operator Theory, 13:4 (1990), 461–487 | DOI | MR | Zbl

[16] G. Bennett, “Schur multipliers”, Duke Math. J., 44:3 (1977), 603–639 | DOI | MR | Zbl

[17] S. K. Berberian, “Note on a theorem of Fuglede and Putnam”, Proc. Amer. Math. Soc., 10:2 (1959), 175–182 | DOI | MR | Zbl

[18] S. N. Bernshtein, “Rasprostranenie neravenstva S. B. Stechkina na tselye funktsii konechnoi stepeni”, Dokl. AN SSSR, 60:9 (1948), 1487–1490 | MR | Zbl

[19] M. Sh. Birman, M. Z. Solomyak, “Dvoinye operatornye integraly Stiltesa”, Spektralnaya teoriya i volnovye protsescy, Probl. matem. fiz., 1, LGU, L., 1966, 33–67 | MR | Zbl

[20] M. Sh. Birman, M. Z. Solomyak, “Dvoinye operatornye integraly Stiltesa. II”, Spektralnaya teoriya, problemy difraktsii, Probl. matem. fiz., 2, LGU, L., 1967, 26–60 | MR | Zbl

[21] M. Sh. Birman, M. Z. Solomyak, “Dvoinye operatornye integraly Stiltesa. III. Predelnyi perekhod pod znakom integrala”, Teoriya funktsii. Spektralnaya teoriya. Rasprostranenie voln, Probl. matem. fiz., 6, LGU, L., 1973, 27–53 | MR | Zbl

[22] M. Birman, M. Solomyak, “Tensor product of a finite number of spectral measures is always a spectral measure”, Integral Equations Operator Theory, 24:2 (1996), 179–187 | DOI | MR | Zbl

[23] Yu. L. Daletskii, S. G. Krein, “Integrirovanie i differentsirovanie funktsii ermitovykh operatorov i prilozheniya k teorii vozmuschenii”, Trudy seminara po funkts. analizu, 1, VGU, Voronezh, 1956, 81–105 | Zbl

[24] V. K. Dzyadyk, Vvedenie v teoriyu ravnomernogo priblizheniya funktsii polinomami, Nauka, M., 1977, 511 pp. | MR | Zbl

[25] Yu. B. Farforovskaya, “O svyazi metriki Kantorovicha–Rubinshteina dlya spektralnykh razlozhenii samosopryazhennykh operatorov s funktsiyami ot operatorov”, Vestn. Leningr. un-ta. Matem., mekh., astronom., 1968, no. 4, 94–97 | Zbl

[26] Yu. B. Farforovskaya, “Example of a Lipschitz function of self-adjoint operators that gives a nonnuclear increment under a nuclear perturbation”, J. Soviet Math., 4:4 (1975), 426–433 | DOI | MR | Zbl

[27] M. Frazier, B. Jawerth, “A discrete transform and decompositions of distribution spaces”, J. Funct. Anal., 93 (1990), 34–170 | DOI | MR | Zbl

[28] I. C. Gohberg, M. G. Kreĭn, Introduction to the theory of linear nonselfadjoint operators, Transl. Math. Monogr., 18, Amer. Math. Soc., Providence, RI, 1969, xv+378 pp. | MR | MR | Zbl | Zbl

[29] G. H. Hardy, W. W. Rogosinski, Fourier series, Cambridge Tracts in Math. and Math. Phys., 38, Cambridge Univ. Press, Cambridge, 1944, 100 pp. | MR | Zbl | Zbl

[30] H. Hedenmalm, B. Korenblum, K. Zhu, Theory of Bergman spaces, Grad. Texts in Math., 199, Springer-Verlag, New York, 2000, x+286 pp. | DOI | MR | Zbl

[31] K. Hoffman, Banach spaces of analytic functions, Prentice-Hall Series in Modern Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1962, xiii+217 pp. | MR | Zbl | Zbl

[32] B. E. Johnson, J. P. Williams, “The range of a normal derivation”, Pacific J. Math., 58:1 (1975), 105–122 | DOI | MR | Zbl

[33] H. M. Kamowitz, “On operators whose spectrum lies on a circle or a line”, Pacific J. Math., 20 (1967), 65–68 | DOI | MR | Zbl

[34] T. Kato, “Continuity of the map $S\mapsto |S| $ for linear operators”, Proc. Japan Acad., 49:3 (1973), 157–160 | DOI | MR | Zbl

[35] E. Kissin, D. Potapov, V. Shulman, F. Sukochev, “Operator smoothness in Schatten norms for functions of several variables: Lipschitz conditions, differentiability and unbounded derivations”, Proc. Lond. Math. Soc. (3), 105:4 (2012), 661–702 | DOI | MR | Zbl

[36] E. Kissin, V. S. Shulman, “On a problem of J. P. Williams”, Proc. Amer. Math. Soc., 130:12 (2002), 3605–3608 | DOI | MR | Zbl

[37] E. Kissin, V. S. Shulman, “Classes of operator-smooth functions. II. Operator-differentiable functions”, Integral Equations Operator Theory, 49:2 (2004), 165–210 | DOI | MR | Zbl

[38] E. Kissin, V. S. Shulman, “Classes of operator-smooth functions. I. Operator-Lipschitz functions”, Proc. Edinb. Math. Soc. (2), 48:1 (2005), 151–173 | DOI | MR | Zbl

[39] E. Kissin, V. S. Shulman, “On fully operator Lipschitz functions”, J. Funct. Anal., 253:2 (2007), 711–728 | DOI | MR | Zbl

[40] F. Kittaneh, “On Lipschitz functions of normal operators”, Proc. Amer. Math. Soc., 94:3 (1985), 416–418 | DOI | MR | Zbl

[41] M. G. Krein, “O formule sledov v teorii vozmuschenii”, Matem. sb., 33(75):3 (1953), 597–626 | MR | Zbl

[42] B. Ya. Levin, Lectures on entire functions, Transl. Math. Monogr., 150, Amer. Math. Soc., Providence, RI, 1996, xvi+248 pp. | MR | Zbl

[43] I. M. Lifshits, “Ob odnoi zadache teorii vozmuschenii, svyazannoi s kvantovoi statistikoi”, UMN, 7:1(47) (1952), 171–180 | MR | Zbl

[44] M. M. Malamud, S. M. Malamud, “Spectral theory of operator measures in Hilbert space”, St. Petersburg Math. J., 15:3 (2004), 323–373 | DOI | MR | Zbl

[45] A. McIntosh, “Counterexample to a question on commutators”, Proc. Amer. Math. Soc., 29:2 (1971), 337–340 | DOI | MR | Zbl

[46] M. A. Naimark, “Spektralnye funktsii simmetricheskogo operatora”, Izv. AN SSSR. Ser. matem., 4:3 (1940), 277–318 | MR | Zbl

[47] I. P. Natanson, Konstruktive Funktionentheorie, Akademie-Verlag, Berlin, 1955, xiv+515 pp. | MR | MR | Zbl | Zbl

[48] F. L. Nazarov, V. V. Peller, “Functions of perturbed $n$-tuples of commuting self-adjoint operators”, J. Funct. Anal., 266:8 (2014), 5398–5428 | DOI | MR | Zbl

[49] L. N. Nikol'skaya, Yu. B. Farforovskaya, “Hölder functions are operator-Hölder”, St. Petersburg Math. J., 22:4 (2011), 657–668 | DOI | MR | Zbl

[50] N. K. Nikol'skii, Treatise on the shift operator. Spectral function theory, Grundlehren Math. Wiss., 273, Springer-Verlag, Berlin, 1986, xii+491 pp. | DOI | MR | MR | Zbl | Zbl

[51] N. K. Nikolski, Operators, functions, and systems: an easy reading, v. 1, Math. Surveys Monogr., 92, Hardy, Hankel, and Toeplitz, Amer. Math. Soc., Providence, RI, 2002, xiv+461 pp. | MR | Zbl

[52] J. Peetre, New thoughts on Besov spaces, Duke University Mathematics Series, 1, Mathematics Department, Duke University, Durham, NC, 1976, vi+305 pp. | MR | Zbl

[53] A. A. Pekarskii, “Classes of analytic functions determined by best rational approximations in $H_p$”, Math. USSR-Sb., 55:1 (1986), 1–18 | DOI | MR | Zbl

[54] V. V. Peller, “Hankel operators of class $\mathfrak S_p$ and their applications (rational approximation, Gaussian processes, the problem of majorizing operators)”, Math. USSR-Sb., 41:4 (1982), 443–479 | DOI | MR | Zbl

[55] V. V. Peller, “A description of Hankel operators of class $\mathfrak S_p$ for $p>0$, an investigation of the rate of rational approximation, and other applications”, Math. USSR-Sb., 50:2 (1985), 465–494 | DOI | MR | Zbl

[56] V. V. Peller, “Hankel operators in the perturbation theory of unitary and self-adjoint operators”, Funct. Anal. Appl., 19:2 (1985), 111–123 | DOI | MR | Zbl

[57] V. V. Peller, “For which $f$ does $A-B\in \mathbf{S}_{p}$ imply that $f(A)-f(B)\in \mathbf{S}_{p}$?”, Operators in indefinite metric spaces, scattering theory and other topics (Bucharest, 1985), Oper. Theory Adv. Appl., 24, Birkhäuser, Basel, 1987, 289–294 | MR | Zbl

[58] V. V. Peller, “Hankel operators in the perturbation theory of unbounded self-adjoint operators”, Analysis and partial differential equations, Lecture Notes in Pure and Appl. Math., 122, Dekker, New York, 1990, 529–544 | MR | Zbl

[59] V. V. Peller, “Functional calculus for a pair of almost commuting selfadjoint operators”, J. Funct. Anal., 112:2 (1993), 325–345 | DOI | MR | Zbl

[60] V. V. Peller, Hankel operators and their applications, Springer Monogr. Math., Springer-Verlag, New York, 2003, xvi+784 pp. | DOI | MR | Zbl

[61] V. V. Peller, “Multiple operator integrals and higher operator derivatives”, J. Funct. Anal., 233:2 (2006), 515–544 | DOI | MR | Zbl

[62] V. V. Peller, “Differentiability of functions of contractions”, Linear and complex analysis, Amer. Math. Soc. Transl. Ser. 2, 226, Amer. Math. Soc., Providence, RI, 2009, 109–131 | MR | Zbl

[63] V. V. Peller, “Multiple operator integrals in perturbation theory”, Bull. Math. Sci., 6:1 (2016), 15–88 | DOI | MR | Zbl

[64] V. Peller, The Lifshits–Krein trace formula and operator Lipschitz functions, 2016, 9 pp., arXiv: 1601.00490

[65] G. Pisier, Similarity problems and completely bounded maps, Includes the solution to “The Halmos problem”, Lecture Notes in Math., 1618, 2nd, expanded ed., Springer-Verlag, Berlin, 2001, viii+198 pp. | DOI | MR | Zbl

[66] G. Pisier, “Grothendieck's theorem, past and present”, Bull. Amer. Math. Soc. (N. S.), 49:2 (2012), 237–323 | DOI | MR | Zbl

[67] D. Potapov, F. Sukochev, “Operator-Lipschitz functions in Schatten–von Neumann classes”, Acta Math., 207:2 (2011), 375–389 | DOI | MR | Zbl

[68] W. Rudin, Functional analysis, McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., 1973, xiii+397 pp. | MR | MR | Zbl

[69] S. Semmes, “Trace ideal criteria for Hankel operators, and applications to Besov spaces”, Integral Equations Operator Theory, 7:2 (1984), 241–281 | DOI | MR | Zbl

[70] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Math. Ser., 30, Princeton Univ. Press, Princeton, NJ, 1970, xiv+290 pp. | MR | MR | Zbl | Zbl

[71] E. M. Stein, G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Math. Ser., 32, Princeton Univ. Press, Princeton, NJ, 1971, x+297 pp. | MR | Zbl | Zbl

[72] B. Sz.-Nagy, C. Foiaş, Analyse harmonique des opérateurs de l'espace de Hilbert, Akadémiaí Kiadó, Budapest; Masson et Cie, Paris, 1967, xi+373 pp. | MR | Zbl | Zbl

[73] A. F. Timan, Theory of approximation of functions of a real variable, Internat. Ser. Monogr. Pure Appl. Math., 34, A Pergamon Press Book. The Macmillan Co., New York, 1963, xii+631 pp. | MR | MR | Zbl

[74] H. Triebel, Theory of function spaces, Monogr. Math., 78, Birkhäuser Verlag, Basel–Boston–Stuttgart, 1983, x+285 pp. | DOI | MR | Zbl | Zbl

[75] H. Widom, “When are differentiable functions differentiable?”, Linear and complex analysis. Problem book. 199 research problems, Lecture Notes in Math., 1043, Springer-Verlag, Berlin, 1984, 184–188

[76] J. P. Williams, “Derivation ranges: open problems”, Topics in modern operator theory (Timişoara/Herculane, 1980), Operator Theory: Adv. Appl., 2, Birkhäuser, Basel–Boston, MA, 1981, 319–328 | MR | Zbl

[77] K. Yosida, Functional analysis, Grundlehren Math. Wiss., 123, Academic Press, Inc., New York; Springer-Verlag, Berlin, 1965, xi+458 pp. | MR | MR | Zbl | Zbl