Operator Lipschitz functions
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 71 (2016) no. 4, pp. 605-702

Voir la notice de l'article provenant de la source Math-Net.Ru

The goal of this survey is a comprehensive study of operator Lipschitz functions. A continuous function $f$ on the real line $\mathbb{R}$ is said to be operator Lipschitz if $\|f(A)-f(B)\|\leqslant\mathrm{const}\|A-B\|$ for arbitrary self-adjoint operators $A$ and $B$. Sufficient conditions and necessary conditions are given for operator Lipschitzness. The class of operator differentiable functions on $\mathbb{R}$ is also studied. Further, operator Lipschitz functions on closed subsets of the plane are considered, and the class of commutator Lipschitz functions on such subsets is introduced. An important role for the study of such classes of functions is played by double operator integrals and Schur multipliers. Bibliography: 77 titles.
Keywords: functions of operators, operator Lipschitz functions, operator differentiable functions, self-adjoint operators, normal operators, divided differences, double operator integrals, linear-fractional transformations, Carleson measures.
Mots-clés : Schur multipliers, Besov classes
@article{RM_2016_71_4_a0,
     author = {A. B. Aleksandrov and V. V. Peller},
     title = {Operator {Lipschitz} functions},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {605--702},
     publisher = {mathdoc},
     volume = {71},
     number = {4},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2016_71_4_a0/}
}
TY  - JOUR
AU  - A. B. Aleksandrov
AU  - V. V. Peller
TI  - Operator Lipschitz functions
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2016
SP  - 605
EP  - 702
VL  - 71
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_2016_71_4_a0/
LA  - en
ID  - RM_2016_71_4_a0
ER  - 
%0 Journal Article
%A A. B. Aleksandrov
%A V. V. Peller
%T Operator Lipschitz functions
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2016
%P 605-702
%V 71
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_2016_71_4_a0/
%G en
%F RM_2016_71_4_a0
A. B. Aleksandrov; V. V. Peller. Operator Lipschitz functions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 71 (2016) no. 4, pp. 605-702. http://geodesic.mathdoc.fr/item/RM_2016_71_4_a0/