@article{RM_2016_71_3_a6,
author = {V. S. Oganesyan},
title = {On operators of the form $\partial_x^4+u(x)$ from a~pair of commuting differential operators of rank~2 and genus~$g$},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {591--593},
year = {2016},
volume = {71},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2016_71_3_a6/}
}
TY - JOUR AU - V. S. Oganesyan TI - On operators of the form $\partial_x^4+u(x)$ from a pair of commuting differential operators of rank 2 and genus $g$ JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2016 SP - 591 EP - 593 VL - 71 IS - 3 UR - http://geodesic.mathdoc.fr/item/RM_2016_71_3_a6/ LA - en ID - RM_2016_71_3_a6 ER -
%0 Journal Article %A V. S. Oganesyan %T On operators of the form $\partial_x^4+u(x)$ from a pair of commuting differential operators of rank 2 and genus $g$ %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2016 %P 591-593 %V 71 %N 3 %U http://geodesic.mathdoc.fr/item/RM_2016_71_3_a6/ %G en %F RM_2016_71_3_a6
V. S. Oganesyan. On operators of the form $\partial_x^4+u(x)$ from a pair of commuting differential operators of rank 2 and genus $g$. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 71 (2016) no. 3, pp. 591-593. http://geodesic.mathdoc.fr/item/RM_2016_71_3_a6/
[1] J. L. Burchnall, T. W. Chaundy, Proc. London Math. Soc. (2), 21:1 (1923), 420–440 | DOI | MR | Zbl
[2] I. M. Krichever, Funkts. analiz i ego pril., 11:1 (1977), 15–31 | DOI | MR | Zbl
[3] J. Dixmier, Bull. Soc. Math. France, 96 (1968), 209–242 | MR | Zbl
[4] I. M. Krichever, Funkts. analiz i ego pril., 12:3 (1978), 20–31 | DOI | MR | Zbl
[5] I. M. Krichever, S. P. Novikov, UMN, 35:6(216) (1980), 47–68 | DOI | MR | Zbl
[6] O. I. Mokhov, UMN, 37:4(226) (1982), 169–170 | DOI | MR | Zbl
[7] O. I. Mokhov, Izv. AN SSSR. Ser. matem., 53:6 (1989), 1291–1315 | DOI | MR | Zbl
[8] O. I. Mokhov, Matem. zametki, 94:2 (2013), 314–316 | DOI | DOI | MR | Zbl
[9] A. E. Mironov, Invent. Math., 197:2 (2014), 417–431 | DOI | MR | Zbl
[10] A. E. Mironov, Topology, geometry, integrable systems, and mathematical physics, Amer. Math. Soc. Transl. Ser. 2, 234, Amer. Math. Soc., Providence, RI, 2014, 309–321 | MR
[11] V. S. Oganesyan, Funkts. analiz i ego pril., 50:1 (2016), 67–75 | DOI | DOI
[12] A. E. Mironov, A. B. Zheglov, Int. Math. Res. Not., 2016:10 (2016), 2974–2993 | DOI
[13] V. N. Davletshina, Sib. matem. zhurn., 56:3 (2015), 513–519 | DOI | DOI | MR | Zbl
[14] O. I. Mokhov, Topology, geometry, integrable systems, and mathematical physics, Amer. Math. Soc. Transl. Ser. 2, 234, Amer. Math. Soc., Providence, RI, 2014, 323–336 | MR