On the Birkhoff theorem with respect to a non-invariant measure
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 71 (2016) no. 3, pp. 588-590
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{RM_2016_71_3_a5,
author = {M. L. Blank},
title = {On the {Birkhoff} theorem with respect to a non-invariant measure},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {588--590},
year = {2016},
volume = {71},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2016_71_3_a5/}
}
M. L. Blank. On the Birkhoff theorem with respect to a non-invariant measure. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 71 (2016) no. 3, pp. 588-590. http://geodesic.mathdoc.fr/item/RM_2016_71_3_a5/
[1] I. P. Kornfeld, Ya. G. Sinai, S. V. Fomin, Ergodicheskaya teoriya, Nauka, M., 1980, 384 pp. | DOI | MR | MR | Zbl | Zbl
[2] W. Hurewicz, Ann. of Math. (2), 45:1 (1944), 192–206 | DOI | MR | Zbl
[3] M. Blank, L. Bunimovich, Nonlinearity, 16:1 (2003), 387–401 | DOI | MR | Zbl
[4] E. Järvenpää, T. Tolonen, Nonlinearity, 18:2 (2005), 897–912 | DOI | MR | Zbl
[5] M. Misiurewicz, Algebraic and topological dynamics, Contemp. Math., 385, Amer. Math. Soc., Providence, RI, 2005, 1–6 | DOI | MR | Zbl