On the Birkhoff theorem with respect to a non-invariant measure
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 71 (2016) no. 3, pp. 588-590 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_2016_71_3_a5,
     author = {M. L. Blank},
     title = {On the {Birkhoff} theorem with respect to a non-invariant measure},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {588--590},
     year = {2016},
     volume = {71},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2016_71_3_a5/}
}
TY  - JOUR
AU  - M. L. Blank
TI  - On the Birkhoff theorem with respect to a non-invariant measure
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2016
SP  - 588
EP  - 590
VL  - 71
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/RM_2016_71_3_a5/
LA  - en
ID  - RM_2016_71_3_a5
ER  - 
%0 Journal Article
%A M. L. Blank
%T On the Birkhoff theorem with respect to a non-invariant measure
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2016
%P 588-590
%V 71
%N 3
%U http://geodesic.mathdoc.fr/item/RM_2016_71_3_a5/
%G en
%F RM_2016_71_3_a5
M. L. Blank. On the Birkhoff theorem with respect to a non-invariant measure. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 71 (2016) no. 3, pp. 588-590. http://geodesic.mathdoc.fr/item/RM_2016_71_3_a5/

[1] I. P. Kornfeld, Ya. G. Sinai, S. V. Fomin, Ergodicheskaya teoriya, Nauka, M., 1980, 384 pp. | DOI | MR | MR | Zbl | Zbl

[2] W. Hurewicz, Ann. of Math. (2), 45:1 (1944), 192–206 | DOI | MR | Zbl

[3] M. Blank, L. Bunimovich, Nonlinearity, 16:1 (2003), 387–401 | DOI | MR | Zbl

[4] E. Järvenpää, T. Tolonen, Nonlinearity, 18:2 (2005), 897–912 | DOI | MR | Zbl

[5] M. Misiurewicz, Algebraic and topological dynamics, Contemp. Math., 385, Amer. Math. Soc., Providence, RI, 2005, 1–6 | DOI | MR | Zbl