Inverse spectral problems for differential operators on spatial networks
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 71 (2016) no. 3, pp. 539-584 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A short survey is given of results on inverse spectral problems for ordinary differential operators on spatial networks (geometrical graphs). The focus is on the most important non-linear inverse problems of recovering coefficients of differential equations from spectral characteristics when the structure of the graph is known a priori. The first half of the survey presents results related to inverse Sturm–Liouville problems on arbitrary compact graphs. Results on inverse problems for differential operators of arbitrary order on compact graphs are then presented. In the conclusion the main results on inverse problems on non-compact graphs are given. Bibliography: 55 titles.
Keywords: differential operators, spatial networks, inverse spectral problems.
@article{RM_2016_71_3_a3,
     author = {V. A. Yurko},
     title = {Inverse spectral problems for differential operators on spatial networks},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {539--584},
     year = {2016},
     volume = {71},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2016_71_3_a3/}
}
TY  - JOUR
AU  - V. A. Yurko
TI  - Inverse spectral problems for differential operators on spatial networks
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2016
SP  - 539
EP  - 584
VL  - 71
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/RM_2016_71_3_a3/
LA  - en
ID  - RM_2016_71_3_a3
ER  - 
%0 Journal Article
%A V. A. Yurko
%T Inverse spectral problems for differential operators on spatial networks
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2016
%P 539-584
%V 71
%N 3
%U http://geodesic.mathdoc.fr/item/RM_2016_71_3_a3/
%G en
%F RM_2016_71_3_a3
V. A. Yurko. Inverse spectral problems for differential operators on spatial networks. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 71 (2016) no. 3, pp. 539-584. http://geodesic.mathdoc.fr/item/RM_2016_71_3_a3/

[1] E. W. Montroll, “Quantum theory on a network. I. A solvable model whose wavefunctions are elementary functions”, J. Math. Phys., 11:2 (1970), 635–648 | DOI

[2] S. Nicaise, “Some results on spectral theory over networks, applied to nerve impulse transmission”, Orthogonal polynomials and applications (Bar-le-Duc, 1984), Lecture Notes in Math., 1771, Springer, Berlin, 1985, 532–541 | DOI | MR | Zbl

[3] J. E. Lagnese, G. Leugering, E. J. P. G. Schmidt, Modelling, analysis and control of dynamic elastic multi-link structures, Systems Control Found. Appl., Birkhäuser Boston, Inc., Boston, MA, 1994, xvi+388 pp. | DOI | MR | Zbl

[4] T. Kottos, U. Smilansky, “Quantum chaos on graphs”, Phys. Rev. Lett., 79:24 (1997), 4794–4797 | DOI

[5] D. C. Sandeman, J. Tautz, M. Lindauer, “Transmission of vibration across honeycombs and its detection by bee leg receptors”, J. Exp. Biol., 199 (1996), 2585–2594

[6] B. Dekoninck, S. Nicaise, “The eigenvalue problem for networks of beams”, Linear Algebra Appl., 314:1-3 (2000), 165–189 | DOI | MR | Zbl

[7] A. V. Sobolev, M. Solomyak, “Schrödinger operator on homogeneous metric trees: spectrum in gaps”, Rev. Math. Phys., 14:5 (2002), 421–467 | DOI | MR | Zbl

[8] Yu. V. Pokornyi, O. M. Penkin, V. L. Pryadiev, A. V. Borovskikh, K. P. Lazarev, S. A. Shabrov, Differentsialnye uravneniya na geometricheskikh grafakh, Fizmatlit, M., 2005, 272 pp. | MR | Zbl

[9] V. A. Marchenko, Sturm–Liouville operators and applications, Oper. Theory Adv. Appl., 22, Birkhäuser Verlag, Basel, 1986, xii+367 pp. | DOI | MR | MR | Zbl | Zbl

[10] B. M. Levitan, Inverse Sturm–Liouville problems, VSP, Zeist, 1987, x+240 pp. | MR | MR | Zbl | Zbl

[11] V. A. Yurko, Method of spectral mappings in the inverse problem theory, Inverse Ill-posed Probl. Ser., VSP, Utrecht, 2002, vi+303 pp. | DOI | MR | Zbl

[12] V. A. Yurko, Vvedenie v teoriyu obratnykh spektralnykh zadach, Fizmatlit, M., 2007, 384 pp. | Zbl

[13] M. I. Belishev, “Boundary spectral inverse problem on a class of graphs (trees) by the BC method”, Inverse Problems, 20:3 (2004), 647–672 | DOI | MR | Zbl

[14] V. Yurko, “Inverse spectral problems for Sturm–Liouville operators on graphs”, Inverse Problems, 21:3 (2005), 1075–1086 | DOI | MR | Zbl

[15] B. M. Brown, R. Weikard, “A Borg–Levinson theorem for trees”, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 461:2062 (2005), 3231–3243 | DOI | MR | Zbl

[16] V. Yurko, “Inverse problems for Sturm–Liouville operators on bush-type graphs”, Inverse Problems, 25:10 (2009), 105008, 14 pp. | DOI | MR | Zbl

[17] V. Yurko, “An inverse problem for Sturm–Liouville operators on A-graphs”, Appl. Math. Lett., 23:8 (2010), 875–879 | DOI | MR | Zbl

[18] V. A. Yurko, “Reconstruction of Sturm–Liouville differential operators on A-graphs”, Differ. Equ., 47:1 (2011), 50–59 | DOI | MR | Zbl

[19] V. A. Yurko, “An inverse problem for Sturm–Liouville operators on arbitrary compact spatial networks”, Dokl. Math., 81:3 (2010), 410–413 | DOI | MR | Zbl

[20] V. A. Yurko, “Inverse spectral problems for differential operators on arbitrary compact graphs”, J. Inverse Ill-Posed Probl., 18:3 (2010), 245–261 | DOI | MR | Zbl

[21] G. Freiling, V. Yurko, “Inverse problems for differential operators on trees with general matching conditions”, Appl. Anal., 86:6 (2007), 653–667 | DOI | MR | Zbl

[22] S. Avdonin, P. Kurasov, “Inverse problems for quantum trees”, Inverse Probl. Imaging, 2:1 (2008), 1–21 | DOI | MR | Zbl

[23] R. Carlson, “Inverse eigenvalue problems on directed graphs”, Trans. Amer. Math. Soc., 351:10 (1999), 4069–4088 | DOI | MR | Zbl

[24] G. Freiling, M. Ignatiev, V. Yurko, “An inverse spectral problem for Sturm–Liouville operators with singular potentials on star-type graphs”, Analysis on graphs and its applications, Proc. Sympos. Pure Math., 77, Amer. Math. Soc., Providence, RI, 2008, 397–408 | DOI | MR | Zbl

[25] P. Kurasov, “Inverse scattering for lasso graph”, J. Math. Phys., 54:4 (2013), 042103, 14 pp. | DOI | MR | Zbl

[26] V. Pivovarchik, “Inverse problem for the Sturm–Liouville equation on a simple graph”, SIAM J. Math. Anal., 32:4 (2000), 801–819 | DOI | MR | Zbl

[27] C.-F. Yang, X.-P. Yang, “Uniqueness theorems from partial information of the potential on a graph”, J. Inverse Ill-Posed Probl., 19:4-5 (2011), 631–641 | DOI | MR | Zbl

[28] V. Yurko, “Inverse nodal problems for Sturm–Liouville operators on star-type graphs”, J. Inverse Ill-Posed Probl., 16:7 (2008), 715–722 | DOI | MR | Zbl

[29] G. Freiling, V. Yurko, “Inverse nodal problems for differential operators on graphs with a cycle”, Tamkang J. Math., 41:1 (2010), 15–24 | MR | Zbl

[30] V. Yurko, “Recovering differential pencils on compact graphs”, J. Differential Equations, 244:2 (2008), 431–443 | DOI | MR | Zbl

[31] V. A. Yurko, “An inverse problem for differential pencils on graphs with a cycle”, J. Inverse Ill-Posed Probl., 22:5 (2014), 625–641 | DOI | MR | Zbl

[32] N. I. Gerasimenko, “Inverse scattering problem on a noncompact graph”, Theoret. and Math. Phys., 75:2 (1988), 460–470 | DOI | MR

[33] M. S. Harmer, “Inverse scattering for the matrix Schrödinger operator and Schrödinger operator on graphs with general self-adjoint boundary conditions”, ANZIAM J., 44:1 (2002), 161–168 | DOI | MR | Zbl

[34] P. Kurasov, F. Stenberg, “On the inverse scattering problem on branching graphs”, J. Phys. A, 35:1 (2002), 101–121 | DOI | MR | Zbl

[35] Y. Latushkin, V. Pivovarchik, “Scattering in a forked-shaped waveguide”, Integral Equations Operator Theory, 61:3 (2008), 365–399 | DOI | MR | Zbl

[36] V. Marchenko, K. Mochizuki, I. Trooshin, “Inverse scattering on a graph containing circle”, Analytic methods of analysis and differential equations: AMADE 2006, Cambridge Sci. Publ., Cambridge, 2008, 237–243 | MR

[37] M. Ignatyev, G. Freiling, “Spectral analysis for the Sturm–Liouville operator on sun-type graphs”, Inverse Problems, 27:9 (2011), 095003, 17 pp. | DOI | MR | Zbl

[38] M. Ignatyev, “Inverse scattering problem for Sturm–Liouville operator on one-vertex noncompact graph with a cycle”, Tamkang J. Math., 42:3 (2011), 365–384 | DOI | MR | Zbl

[39] M. Ignatyev, “Inverse scattering problem for Sturm–Liouville operator on non-compact A-graph. Uniqueness result”, Tamkang J. Math., 46:4 (2015), 401–422 ; (2013), 17 pp., arXiv: 1311.2862 | DOI | MR | Zbl

[40] S. A. Buterin, G. Freiling, “Inverse spectral-scattering problem for the Sturm–Liouville operator on a noncompact star-type graph”, Tamkang J. Math., 44:3 (2013), 327–349 | DOI | MR | Zbl

[41] G. Freiling, V. Yurko, “Inverse spectral problems for Sturm–Liouville operators on noncompact trees”, Results Math., 50:3-4 (2007), 195–212 | DOI | MR | Zbl

[42] V. A. Yurko, “Inverse spectral problem for differential operator pencils on noncompact spatial networks”, Differ. Equ., 44:12 (2008), 1721–1729 | DOI | MR | Zbl

[43] V. Yurko, “Inverse problems for Bessel-type differential equations on noncompact graphs using spectral data”, Inverse Problems, 27:4 (2011), 045002, 17 pp. | DOI | MR | Zbl

[44] V. A. Yurko, “Inverse problems for differential operators of any order on trees”, Math. Notes, 83:1 (2008), 125–137 | DOI | DOI | MR | Zbl

[45] V. A. Yurko, “Inverse spectral problems for arbitrary order differential operators on noncompact trees”, J. Inverse Ill-Posed Probl., 20:1 (2012), 111–131 | DOI | MR | Zbl

[46] V. A. Yurko, “Inverse problems for differential systems on graphs with regular singularities”, Math. Notes, 96:3-4 (2014), 617–621 | DOI | MR | Zbl

[47] Yu. V. Pokornyi, T. V. Beloglazova, K. P. Lazarev, “On a class of ordinary differential equations of various orders on a graph”, Math. Notes, 73:3 (2003), 440–442 | DOI | DOI | MR | Zbl

[48] V. A. Yurko, “Recovering variable order differential operators on star-type graphs from spectra”, Differ. Equ., 49:12 (2013), 1490–1501 | DOI | Zbl

[49] V. Yurko, “Inverse problems for differential operators of variable orders on star-type graphs: general case”, Anal. Math. Phys., 4:3 (2014), 247–262 | DOI | MR | Zbl

[50] N. Bondarenko, “Inverse problems for the differential operator on the graph with a cycle with different orders on different edges”, Tamkang J. Math., 46:3 (2015), 229–243 | DOI | MR | Zbl

[51] M. Yu. Ignatev, “Edinstvennost vosstanovleniya differentsialnogo operatora peremennogo poryadka na prosteishem nekompaktnom grafe s tsiklom”, Matematika. Mekhanika, 15, Izd-vo Sarat. un-ta, Saratov, 2013, 35–37

[52] M. Yu. Ignatev, “Edinstvennost resheniya obratnoi zadachi rasseyaniya dlya differentsialnogo uravneniya peremennogo poryadka na prosteishem nekompaktnom grafe s tsiklom”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 14:4(2) (2014), 542–549 | Zbl

[53] S. Currie, B. A. Watson, “The $M$-matrix inverse problem for the Sturm–Liouville equation on graphs”, Proc. Roy. Soc. Edinburgh Sect. A, 139:4 (2009), 775–796 | DOI | MR | Zbl

[54] V. A. Yurko, “Inverse problems for the matrix Sturm–Liouville equation on a finite interval”, Inverse Problems, 22:4 (2006), 1139–1149 | DOI | MR | Zbl

[55] M. A. Naimark, Linear differential operators, v. I, II, Frederick Ungar Publishing Co., New York, 1967, 1968, xiii+144 pp., xv+352 pp. | MR | MR | MR | Zbl | Zbl