@article{RM_2016_71_3_a3,
author = {V. A. Yurko},
title = {Inverse spectral problems for differential operators on spatial networks},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {539--584},
year = {2016},
volume = {71},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2016_71_3_a3/}
}
V. A. Yurko. Inverse spectral problems for differential operators on spatial networks. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 71 (2016) no. 3, pp. 539-584. http://geodesic.mathdoc.fr/item/RM_2016_71_3_a3/
[1] E. W. Montroll, “Quantum theory on a network. I. A solvable model whose wavefunctions are elementary functions”, J. Math. Phys., 11:2 (1970), 635–648 | DOI
[2] S. Nicaise, “Some results on spectral theory over networks, applied to nerve impulse transmission”, Orthogonal polynomials and applications (Bar-le-Duc, 1984), Lecture Notes in Math., 1771, Springer, Berlin, 1985, 532–541 | DOI | MR | Zbl
[3] J. E. Lagnese, G. Leugering, E. J. P. G. Schmidt, Modelling, analysis and control of dynamic elastic multi-link structures, Systems Control Found. Appl., Birkhäuser Boston, Inc., Boston, MA, 1994, xvi+388 pp. | DOI | MR | Zbl
[4] T. Kottos, U. Smilansky, “Quantum chaos on graphs”, Phys. Rev. Lett., 79:24 (1997), 4794–4797 | DOI
[5] D. C. Sandeman, J. Tautz, M. Lindauer, “Transmission of vibration across honeycombs and its detection by bee leg receptors”, J. Exp. Biol., 199 (1996), 2585–2594
[6] B. Dekoninck, S. Nicaise, “The eigenvalue problem for networks of beams”, Linear Algebra Appl., 314:1-3 (2000), 165–189 | DOI | MR | Zbl
[7] A. V. Sobolev, M. Solomyak, “Schrödinger operator on homogeneous metric trees: spectrum in gaps”, Rev. Math. Phys., 14:5 (2002), 421–467 | DOI | MR | Zbl
[8] Yu. V. Pokornyi, O. M. Penkin, V. L. Pryadiev, A. V. Borovskikh, K. P. Lazarev, S. A. Shabrov, Differentsialnye uravneniya na geometricheskikh grafakh, Fizmatlit, M., 2005, 272 pp. | MR | Zbl
[9] V. A. Marchenko, Sturm–Liouville operators and applications, Oper. Theory Adv. Appl., 22, Birkhäuser Verlag, Basel, 1986, xii+367 pp. | DOI | MR | MR | Zbl | Zbl
[10] B. M. Levitan, Inverse Sturm–Liouville problems, VSP, Zeist, 1987, x+240 pp. | MR | MR | Zbl | Zbl
[11] V. A. Yurko, Method of spectral mappings in the inverse problem theory, Inverse Ill-posed Probl. Ser., VSP, Utrecht, 2002, vi+303 pp. | DOI | MR | Zbl
[12] V. A. Yurko, Vvedenie v teoriyu obratnykh spektralnykh zadach, Fizmatlit, M., 2007, 384 pp. | Zbl
[13] M. I. Belishev, “Boundary spectral inverse problem on a class of graphs (trees) by the BC method”, Inverse Problems, 20:3 (2004), 647–672 | DOI | MR | Zbl
[14] V. Yurko, “Inverse spectral problems for Sturm–Liouville operators on graphs”, Inverse Problems, 21:3 (2005), 1075–1086 | DOI | MR | Zbl
[15] B. M. Brown, R. Weikard, “A Borg–Levinson theorem for trees”, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 461:2062 (2005), 3231–3243 | DOI | MR | Zbl
[16] V. Yurko, “Inverse problems for Sturm–Liouville operators on bush-type graphs”, Inverse Problems, 25:10 (2009), 105008, 14 pp. | DOI | MR | Zbl
[17] V. Yurko, “An inverse problem for Sturm–Liouville operators on A-graphs”, Appl. Math. Lett., 23:8 (2010), 875–879 | DOI | MR | Zbl
[18] V. A. Yurko, “Reconstruction of Sturm–Liouville differential operators on A-graphs”, Differ. Equ., 47:1 (2011), 50–59 | DOI | MR | Zbl
[19] V. A. Yurko, “An inverse problem for Sturm–Liouville operators on arbitrary compact spatial networks”, Dokl. Math., 81:3 (2010), 410–413 | DOI | MR | Zbl
[20] V. A. Yurko, “Inverse spectral problems for differential operators on arbitrary compact graphs”, J. Inverse Ill-Posed Probl., 18:3 (2010), 245–261 | DOI | MR | Zbl
[21] G. Freiling, V. Yurko, “Inverse problems for differential operators on trees with general matching conditions”, Appl. Anal., 86:6 (2007), 653–667 | DOI | MR | Zbl
[22] S. Avdonin, P. Kurasov, “Inverse problems for quantum trees”, Inverse Probl. Imaging, 2:1 (2008), 1–21 | DOI | MR | Zbl
[23] R. Carlson, “Inverse eigenvalue problems on directed graphs”, Trans. Amer. Math. Soc., 351:10 (1999), 4069–4088 | DOI | MR | Zbl
[24] G. Freiling, M. Ignatiev, V. Yurko, “An inverse spectral problem for Sturm–Liouville operators with singular potentials on star-type graphs”, Analysis on graphs and its applications, Proc. Sympos. Pure Math., 77, Amer. Math. Soc., Providence, RI, 2008, 397–408 | DOI | MR | Zbl
[25] P. Kurasov, “Inverse scattering for lasso graph”, J. Math. Phys., 54:4 (2013), 042103, 14 pp. | DOI | MR | Zbl
[26] V. Pivovarchik, “Inverse problem for the Sturm–Liouville equation on a simple graph”, SIAM J. Math. Anal., 32:4 (2000), 801–819 | DOI | MR | Zbl
[27] C.-F. Yang, X.-P. Yang, “Uniqueness theorems from partial information of the potential on a graph”, J. Inverse Ill-Posed Probl., 19:4-5 (2011), 631–641 | DOI | MR | Zbl
[28] V. Yurko, “Inverse nodal problems for Sturm–Liouville operators on star-type graphs”, J. Inverse Ill-Posed Probl., 16:7 (2008), 715–722 | DOI | MR | Zbl
[29] G. Freiling, V. Yurko, “Inverse nodal problems for differential operators on graphs with a cycle”, Tamkang J. Math., 41:1 (2010), 15–24 | MR | Zbl
[30] V. Yurko, “Recovering differential pencils on compact graphs”, J. Differential Equations, 244:2 (2008), 431–443 | DOI | MR | Zbl
[31] V. A. Yurko, “An inverse problem for differential pencils on graphs with a cycle”, J. Inverse Ill-Posed Probl., 22:5 (2014), 625–641 | DOI | MR | Zbl
[32] N. I. Gerasimenko, “Inverse scattering problem on a noncompact graph”, Theoret. and Math. Phys., 75:2 (1988), 460–470 | DOI | MR
[33] M. S. Harmer, “Inverse scattering for the matrix Schrödinger operator and Schrödinger operator on graphs with general self-adjoint boundary conditions”, ANZIAM J., 44:1 (2002), 161–168 | DOI | MR | Zbl
[34] P. Kurasov, F. Stenberg, “On the inverse scattering problem on branching graphs”, J. Phys. A, 35:1 (2002), 101–121 | DOI | MR | Zbl
[35] Y. Latushkin, V. Pivovarchik, “Scattering in a forked-shaped waveguide”, Integral Equations Operator Theory, 61:3 (2008), 365–399 | DOI | MR | Zbl
[36] V. Marchenko, K. Mochizuki, I. Trooshin, “Inverse scattering on a graph containing circle”, Analytic methods of analysis and differential equations: AMADE 2006, Cambridge Sci. Publ., Cambridge, 2008, 237–243 | MR
[37] M. Ignatyev, G. Freiling, “Spectral analysis for the Sturm–Liouville operator on sun-type graphs”, Inverse Problems, 27:9 (2011), 095003, 17 pp. | DOI | MR | Zbl
[38] M. Ignatyev, “Inverse scattering problem for Sturm–Liouville operator on one-vertex noncompact graph with a cycle”, Tamkang J. Math., 42:3 (2011), 365–384 | DOI | MR | Zbl
[39] M. Ignatyev, “Inverse scattering problem for Sturm–Liouville operator on non-compact A-graph. Uniqueness result”, Tamkang J. Math., 46:4 (2015), 401–422 ; (2013), 17 pp., arXiv: 1311.2862 | DOI | MR | Zbl
[40] S. A. Buterin, G. Freiling, “Inverse spectral-scattering problem for the Sturm–Liouville operator on a noncompact star-type graph”, Tamkang J. Math., 44:3 (2013), 327–349 | DOI | MR | Zbl
[41] G. Freiling, V. Yurko, “Inverse spectral problems for Sturm–Liouville operators on noncompact trees”, Results Math., 50:3-4 (2007), 195–212 | DOI | MR | Zbl
[42] V. A. Yurko, “Inverse spectral problem for differential operator pencils on noncompact spatial networks”, Differ. Equ., 44:12 (2008), 1721–1729 | DOI | MR | Zbl
[43] V. Yurko, “Inverse problems for Bessel-type differential equations on noncompact graphs using spectral data”, Inverse Problems, 27:4 (2011), 045002, 17 pp. | DOI | MR | Zbl
[44] V. A. Yurko, “Inverse problems for differential operators of any order on trees”, Math. Notes, 83:1 (2008), 125–137 | DOI | DOI | MR | Zbl
[45] V. A. Yurko, “Inverse spectral problems for arbitrary order differential operators on noncompact trees”, J. Inverse Ill-Posed Probl., 20:1 (2012), 111–131 | DOI | MR | Zbl
[46] V. A. Yurko, “Inverse problems for differential systems on graphs with regular singularities”, Math. Notes, 96:3-4 (2014), 617–621 | DOI | MR | Zbl
[47] Yu. V. Pokornyi, T. V. Beloglazova, K. P. Lazarev, “On a class of ordinary differential equations of various orders on a graph”, Math. Notes, 73:3 (2003), 440–442 | DOI | DOI | MR | Zbl
[48] V. A. Yurko, “Recovering variable order differential operators on star-type graphs from spectra”, Differ. Equ., 49:12 (2013), 1490–1501 | DOI | Zbl
[49] V. Yurko, “Inverse problems for differential operators of variable orders on star-type graphs: general case”, Anal. Math. Phys., 4:3 (2014), 247–262 | DOI | MR | Zbl
[50] N. Bondarenko, “Inverse problems for the differential operator on the graph with a cycle with different orders on different edges”, Tamkang J. Math., 46:3 (2015), 229–243 | DOI | MR | Zbl
[51] M. Yu. Ignatev, “Edinstvennost vosstanovleniya differentsialnogo operatora peremennogo poryadka na prosteishem nekompaktnom grafe s tsiklom”, Matematika. Mekhanika, 15, Izd-vo Sarat. un-ta, Saratov, 2013, 35–37
[52] M. Yu. Ignatev, “Edinstvennost resheniya obratnoi zadachi rasseyaniya dlya differentsialnogo uravneniya peremennogo poryadka na prosteishem nekompaktnom grafe s tsiklom”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 14:4(2) (2014), 542–549 | Zbl
[53] S. Currie, B. A. Watson, “The $M$-matrix inverse problem for the Sturm–Liouville equation on graphs”, Proc. Roy. Soc. Edinburgh Sect. A, 139:4 (2009), 775–796 | DOI | MR | Zbl
[54] V. A. Yurko, “Inverse problems for the matrix Sturm–Liouville equation on a finite interval”, Inverse Problems, 22:4 (2006), 1139–1149 | DOI | MR | Zbl
[55] M. A. Naimark, Linear differential operators, v. I, II, Frederick Ungar Publishing Co., New York, 1967, 1968, xiii+144 pp., xv+352 pp. | MR | MR | MR | Zbl | Zbl