Inverse spectral problems for differential operators on spatial networks
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 71 (2016) no. 3, pp. 539-584

Voir la notice de l'article provenant de la source Math-Net.Ru

A short survey is given of results on inverse spectral problems for ordinary differential operators on spatial networks (geometrical graphs). The focus is on the most important non-linear inverse problems of recovering coefficients of differential equations from spectral characteristics when the structure of the graph is known a priori. The first half of the survey presents results related to inverse Sturm–Liouville problems on arbitrary compact graphs. Results on inverse problems for differential operators of arbitrary order on compact graphs are then presented. In the conclusion the main results on inverse problems on non-compact graphs are given. Bibliography: 55 titles.
Keywords: differential operators, spatial networks, inverse spectral problems.
@article{RM_2016_71_3_a3,
     author = {V. A. Yurko},
     title = {Inverse spectral problems for differential operators on spatial networks},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {539--584},
     publisher = {mathdoc},
     volume = {71},
     number = {3},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2016_71_3_a3/}
}
TY  - JOUR
AU  - V. A. Yurko
TI  - Inverse spectral problems for differential operators on spatial networks
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2016
SP  - 539
EP  - 584
VL  - 71
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_2016_71_3_a3/
LA  - en
ID  - RM_2016_71_3_a3
ER  - 
%0 Journal Article
%A V. A. Yurko
%T Inverse spectral problems for differential operators on spatial networks
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2016
%P 539-584
%V 71
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_2016_71_3_a3/
%G en
%F RM_2016_71_3_a3
V. A. Yurko. Inverse spectral problems for differential operators on spatial networks. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 71 (2016) no. 3, pp. 539-584. http://geodesic.mathdoc.fr/item/RM_2016_71_3_a3/