Operator estimates in homogenization theory
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 71 (2016) no. 3, pp. 417-511

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper gives a systematic treatment of two methods for obtaining operator estimates: the shift method and the spectral method. Though substantially different in mathematical technique and physical motivation, these methods produce basically the same results. Besides the classical formulation of the homogenization problem, other formulations of the problem are also considered: homogenization in perforated domains, the case of an unbounded diffusion matrix, non-self-adjoint evolution equations, and higher-order elliptic operators. Bibliography: 62 titles.
Keywords: shift method, integrated estimate, Steklov smoothing, periodicity, problem on the cell, asymptotics of the fundamental solution, spectral method, Bloch representation of an operator, Nash–Aronson estimate.
@article{RM_2016_71_3_a1,
     author = {V. V. Zhikov and S. E. Pastukhova},
     title = {Operator estimates in homogenization theory},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {417--511},
     publisher = {mathdoc},
     volume = {71},
     number = {3},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2016_71_3_a1/}
}
TY  - JOUR
AU  - V. V. Zhikov
AU  - S. E. Pastukhova
TI  - Operator estimates in homogenization theory
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2016
SP  - 417
EP  - 511
VL  - 71
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_2016_71_3_a1/
LA  - en
ID  - RM_2016_71_3_a1
ER  - 
%0 Journal Article
%A V. V. Zhikov
%A S. E. Pastukhova
%T Operator estimates in homogenization theory
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2016
%P 417-511
%V 71
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_2016_71_3_a1/
%G en
%F RM_2016_71_3_a1
V. V. Zhikov; S. E. Pastukhova. Operator estimates in homogenization theory. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 71 (2016) no. 3, pp. 417-511. http://geodesic.mathdoc.fr/item/RM_2016_71_3_a1/