@article{RM_2016_71_3_a1,
author = {V. V. Zhikov and S. E. Pastukhova},
title = {Operator estimates in homogenization theory},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {417--511},
year = {2016},
volume = {71},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2016_71_3_a1/}
}
V. V. Zhikov; S. E. Pastukhova. Operator estimates in homogenization theory. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 71 (2016) no. 3, pp. 417-511. http://geodesic.mathdoc.fr/item/RM_2016_71_3_a1/
[1] A. Bensoussan, J.-L. Lions, G. Papanicolaou, Asymptotic analysis for periodic structure, Stud. Math. Appl., 5, North-Holland Publishing Co., Amsterdam–New York, 1978, xxiv+700 pp. | MR | Zbl
[2] N. Bakhvalov, G. Panasenko, Homogenisation: averaging processes in periodic media. Mathematical problems in the mechanics of composite materials, Math. Appl. (Soviet Ser.), 36, Kluwer Acad. Publ., Dordrecht, 1989, xxxvi+366 pp. | DOI | MR | MR | Zbl | Zbl
[3] E. Sánchez-Palencia, Non-homogeneous media and vibration theory, Lecture Notes in Phys., 127, Springer-Verlag, Berlin–New York, 1980, ix+398 pp. | DOI | MR | MR | Zbl
[4] V. V. Jikov, S. M. Kozlov, O. A. Oleinik, Homogenization of differential operators and integral functionals, Springer-Verlag, Berlin, 1994, xii+570 pp. | DOI | MR | MR | Zbl | Zbl
[5] V. V. Zhikov, “Spectral approach to asymptotic problems in diffusion”, Differential Equations, 25:1 (1989), 33–39 | MR | Zbl
[6] T. A. Suslina, “On homogenization of periodic parabolic systems”, Funct. Anal. Appl., 38:4 (2004), 309–312 | DOI | DOI | MR | Zbl
[7] V. V. Zhikov, S. E. Pastukhova, “Estimates of homogenization for a parabolic equation with periodic coefficients”, Russ. J. Math. Phys., 13:2 (2006), 224–237 | DOI | MR | Zbl
[8] J. H. Ortega, E. Zuazua, “Large time behavior in $\mathbb{R}^d$ for linear parabolic equations with periodic coefficients”, Asymptot. Anal., 22:1 (2000), 51–85 | MR | Zbl
[9] M. Sh. Birman, T. A. Suslina, “Second order periodic differential operators. Threshold properties and homogenization”, St. Petersburg Math. J., 15:5 (2004), 639–714 | DOI | MR | Zbl
[10] V. V. Zhikov, “On operator estimates in homogenization theory”, Dokl. Math., 72:1 (2005), 534–538 | MR | Zbl
[11] V. V. Zhikov, “Some estimates from homogenization theory”, Dokl. Math., 73:1 (2006), 96–99 | DOI | MR | Zbl
[12] T. A. Suslina, “Homogenization of a stationary periodic Maxwell system”, St. Petersburg Math. J., 16:5 (2005), 863–922 | DOI | MR | Zbl
[13] V. V. Zhikov, S. E. Pastukhova, “On operator estimates for some problems in homogenization theory”, Russ. J. Math. Phys., 12:4 (2005), 515–524 | MR | Zbl
[14] S. E. Pastukhova, “Some estimates from homogenized elasticity problems”, Dokl. Math., 73:1 (2006), 102–106 | DOI | MR | Zbl
[15] R. M. Christensen, Mechanics of composite materials, Wiley-Interscience, New York, 1979, 348 pp.
[16] L. M. Brekhovskikh, Waves in layered media, Appl. Math. Mech., 16, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York–London, 1980, xiii+503 pp. | MR | MR | Zbl | Zbl
[17] L. Brillouin, M. Parodi, Propagation des ondes dans les milieux périodiques, Masson et Cie, Paris; Dunod, Paris, 1956, iv+347 pp. | MR | Zbl
[18] G. K. Batchelor, “Compression waves in a suspension of gas bubbles in liquid”, Fluid Dynamics Transactions (Warszawa), 4 (1967), 425–445
[19] A. Yu. Belyaev, Usrednenie v zadachakh teorii filtratsii, Nauka, M., 2004, 200 pp. | Zbl
[20] E. V. Sevost'yanova, “An asymptotic expansion of the solution of a second order elliptic equation with periodic rapidly oscillating coefficients”, Math. USSR-Sb., 43:2 (1982), 181–198 | DOI | MR | Zbl
[21] A. Yu. Belyaev, “Compression waves in a fluid with gas bubbles”, J. Appl. Math. Mech., 52:3 (1988), 344–348 | DOI | Zbl
[22] I. A. Aleksandrova, “The spectral method in asymptotic diffusion problems with drift”, Math. Notes, 59:5 (1996), 554–556 | DOI | DOI | MR | Zbl
[23] C. Conca, R. Orive, M. Vanninathan, “Bloch approximation in homogenization and applications”, SIAM J. Math. Anal., 33:5 (2002), 1166–1198 | DOI | MR | Zbl
[24] M. Sh. Birman, T. A. Suslina, “Operator error estimates in the homogenization problem for nonstationary periodic equations”, St. Petersburg Math. J., 20:6 (2009), 873–928 | DOI | MR | Zbl
[25] A. A. Kukushkin, T. A. Suslina, “Usrednenie ellipticheskikh operatorov vysokogo poryadka s periodicheskimi koeffitsientami”, Algebra i analiz, 28:1 (2016), 89–149
[26] O. A. Ladyzhenskaya, N. N. Ural'tseva, Linear and quasilinear elliptic equations, Academic Press, New York–London, 1968, xviii+495 pp. | MR | MR | Zbl | Zbl
[27] D. Kinderlehrer, G. Stampacchia, An introduction to variational inequalities and their applications, Pure Appl. Math., 88, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York–London, 1980, xiv+313 pp. | MR | MR | Zbl | Zbl
[28] T. A. Suslina, “Homogenization of the Dirichlet problem for elliptic systems: $L_2$-operator error estimates”, Mathematika, 59:2 (2013), 463–476 | DOI | MR | Zbl
[29] T. Suslina, “Homogenization of the Neumann problem for elliptic systems with periodic coefficients”, SIAM J. Math. Anal., 45:6 (2013), 3453–3493 | DOI | MR | Zbl
[30] E. M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Math. Ser., 43, Princeton Univ. Press, Princeton, NJ, 1993, xiv+695 pp. | MR | Zbl
[31] R. Coifman, P. L. Lions, Y. Meyer, S. Semmes, “Compensated compactness and Hardy spaces”, J. Math. Pures Appl. (9), 72:3 (1993), 247–286 | MR | Zbl
[32] V. G. Maz'ya, I. E. Verbitsky, “Form boundedness of the general second-order differential operator”, Comm. Pure Appl. Math., 59:9 (2006), 1286–1329 | DOI | MR | Zbl
[33] V. V. Zhikov, “Remarks on the uniqueness of a solution of the Dirichlet problem for second-order elliptic equations with lower-order terms”, Funct. Anal. Appl., 38:3 (2004), 173–183 | DOI | DOI | MR | Zbl
[34] V. V. Zhikov, “Diffusion in an incompressible random flow”, Funct. Anal. Appl., 31:3 (1997), 156–166 | DOI | DOI | MR | Zbl
[35] V. V. Zhikov, S. V. Tikhomirova, “On operator estimates in nonsymmetric averaging problems”, J. Math. Sci. (N. Y.), 144:1 (2007), 3870–3874 | DOI | Zbl
[36] V. V. Zhikov, S. E. Pastukhova, “Homogenization of degenerate elliptic equations”, Sib. Math. J., 49:1 (2008), 80–101 | DOI | MR | Zbl
[37] G. Allaire, M. Briane, “Multiscale convergence and reiterated homogenisation”, Proc. Roy. Soc. Edinburgh Sect. A, 126:2 (1996), 297–342 | DOI | MR | Zbl
[38] M. L. Kleptsyna, A. L. Pyatnitski, “Homogenization of a random non-stationary convection-diffusion problem”, Russian Math. Surveys, 57:4 (2002), 729–751 | DOI | DOI | MR | Zbl
[39] D. Lukkassen, G. Nguetseng, P. Wall, “Two-scale convergence”, Int. J. Pure Appl. Math., 2:1 (2002), 35–86 | MR | Zbl
[40] A. M. Meirmanov, “Prilozhenie metoda povtornogo usredneniya differentsialnykh uravnenii v teorii filtratsii szhimaemykh vyazkikh zhidkostei v szhimaemykh treschinovato-poristykh sredakh. Chast I: Mikroskopicheskoe opisanie”, Matem. modelirovanie, 23:1 (2011), 100–114 | MR | Zbl
[41] A. M. Meirmanov, “Prilozhenie metoda povtornogo usredneniya differentsialnykh uravnenii v teorii filtratsii szhimaemykh vyazkikh zhidkostei v szhimaemykh treschinovato-poristykh sredakh. Chast II: Makroskopicheskoe opisanie”, Matem. modelirovanie, 23:4 (2011), 3–22 | MR | Zbl
[42] A. Meirmanov, “Equations of liquid filtration in double porosity media as a reiterated homogenization of Stokes equations”, Proc. Steklov Inst. Math., 278 (2012), 152–160 | DOI | MR | Zbl
[43] D. I. Borisov, “Asymptotics for the solutions of elliptic systems with rapidly oscillating coefficients”, St. Petersburg Math. J., 20:2 (2009), 175–191 | DOI | MR | Zbl
[44] D. I. Borisov, R. R. Gadyl'shin, “On the spectrum of a periodic operator with a small localized perturbation”, Izv. Math., 72:4 (2008), 659–688 | DOI | DOI | MR | Zbl
[45] S. E. Pastukhova, R. N. Tikhomirov, “Estimates of locally periodic and reiterated homogenization for parabolic equations”, Dokl. Math., 80:2 (2009), 674–678 | DOI | MR | Zbl
[46] S. E. Pastukhova, “Operator estimates in nonlinear problems of reiterated homogenization”, Proc. Steklov Inst. Math., 261 (2008), 214–228 | DOI | MR | Zbl
[47] S. Pastukhova, “Estimates in homogenization of parabolic equations with locally periodic coefficients”, Asymptot. Anal., 66:3-4 (2010), 207–228 | DOI | MR | Zbl
[48] S. E. Pastukhova, “Approximation of the exponential of a diffusion operator with multiscale coefficients”, Funct. Anal. Appl., 48:3 (2014), 183–197 | DOI | DOI | Zbl
[49] S. E. Pastukhova, “The Dirichlet problem for elliptic equations with multiscale coefficients. Operator estimates for homogenization”, J. Math. Sci. (N. Y.), 193:2 (2013), 283–300 | DOI | MR | Zbl
[50] S. Pastukhova, R. Tikhomirov, On homogenization estimates in Neuman boundary value problem for an elliptic equation with multiscale coefficients, 2015, 19 pp., arXiv: 1512.06396
[51] V. V. Zhikov, S. M. Kozlov, O. A. Oleinik, Hà Tiên Ngoan, “Averaging and $G$-convergence of differential operators”, Russian Math. Surveys, 34:5 (1979), 69–147 | DOI | MR | Zbl
[52] T. Kato, Perturbation theory for linear operators, Grundlehren Math. Wiss., 132, Springer-Verlag, New York, 1966, xix+592 pp. | MR | MR | Zbl | Zbl
[53] W. Feller, An introduction to probability theory and its applications, v. II, John Wiley Sons, Inc., New York–London–Sydney, 1966, xviii+626 pp. | MR | MR | Zbl | Zbl
[54] V. B. Korotkov, Integralnye operatory, Nauka, Novosibirsk, 1983, 224 pp. | MR | Zbl
[55] V. V. Zhikov, “Asymptotic behavior and stabilization of solutions of a second order parabolic equation with lower order terms”, Trans. Moscow Math. Soc., 1984, No 2, Amer. Math. Soc., Providence, RI, 1984, 69–99 | MR | Zbl
[56] A. L. Piatnitski, “Averaging a singularly perturbed equation with rapidly oscillating coefficients in a layer”, Math. USSR-Sb., 49:1 (1984), 19–40 | DOI | MR | Zbl
[57] P. Donato, A. Piatnitski, “Averaging of nonstationary parabolic operators with large lower order terms”, Multi-scale problems and asymptotic analysis, GAKUTO Internat. Ser. Math. Sci. Appl., 24, Gakkōtosho, Tokyo, 2006, 153–165 | MR | Zbl
[58] G. Allaire, R. Orive, “Homogenization of periodic non self-adjoint problems with large drift and potential”, ESAIM Control Optim. Calc. Var., 13:4 (2007), 735–749 | DOI | MR | Zbl
[59] S. E. Pastukhova, “Approximations of the operator exponential in a periodic diffusion problem with drift”, Sb. Math., 204:2 (2013), 280–306 | DOI | DOI | MR | Zbl
[60] K. Yosida, Functional analysis, Grundlehren Math. Wiss., 123, Academic Press, Inc., New York; Springer-Verlag, Berlin, 1965, xi+458 pp. | MR | MR | Zbl | Zbl
[61] S. Mizohata, Henbidun hôteisiki ron [The theory of partial differential equations], Contemp. Math., 9, Iwanami Shoten, Tokyo, 1965, viii+462 pp. | MR | Zbl
[62] S. E. Pastukhova, “Approximations of the exponential of an operator with periodic coefficients”, J. Math. Sci. (N. Y.), 181:5 (2012), 668–700 | MR | Zbl