Mots-clés : Klein–Gordon equation
@article{RM_2016_71_3_a0,
author = {I. E. Egorova and E. A. Kopylova and V. A. Marchenko and G. Teschl},
title = {Dispersion estimates for one-dimensional {Schr\"odinger} and {Klein{\textendash}Gordon} equations revisited},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {391--415},
year = {2016},
volume = {71},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2016_71_3_a0/}
}
TY - JOUR AU - I. E. Egorova AU - E. A. Kopylova AU - V. A. Marchenko AU - G. Teschl TI - Dispersion estimates for one-dimensional Schrödinger and Klein–Gordon equations revisited JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2016 SP - 391 EP - 415 VL - 71 IS - 3 UR - http://geodesic.mathdoc.fr/item/RM_2016_71_3_a0/ LA - en ID - RM_2016_71_3_a0 ER -
%0 Journal Article %A I. E. Egorova %A E. A. Kopylova %A V. A. Marchenko %A G. Teschl %T Dispersion estimates for one-dimensional Schrödinger and Klein–Gordon equations revisited %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2016 %P 391-415 %V 71 %N 3 %U http://geodesic.mathdoc.fr/item/RM_2016_71_3_a0/ %G en %F RM_2016_71_3_a0
I. E. Egorova; E. A. Kopylova; V. A. Marchenko; G. Teschl. Dispersion estimates for one-dimensional Schrödinger and Klein–Gordon equations revisited. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 71 (2016) no. 3, pp. 391-415. http://geodesic.mathdoc.fr/item/RM_2016_71_3_a0/
[1] J. Bergh, J. Löfström, Interpolation spaces. An introduction, Grundlehren Math. Wiss., 223, Springer-Verlag, Berlin–New York, 1976, x+207 pp. | DOI | MR | MR | Zbl
[2] V. S. Buslaev, C. Sulem, “On asymptotic stability of solitary waves for nonlinear Schrödinger equations”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 20:3 (2003), 419–475 | DOI | MR | Zbl
[3] S. Cuccagna, “On dispersion for Klein Gordon equation with periodic potential in 1D”, Hokkaido Math. J., 37:4 (2008), 627–645 | DOI | MR | Zbl
[4] P. D'Ancona, L. Fanelli, “$L^p$-boundedness of the wave operator for the one dimensional Schrödinger operator”, Comm. Math. Phys., 268:2 (2006), 415–438 | DOI | MR | Zbl
[5] P. Deift, E. Trubowitz, “Inverse scattering on the line”, Comm. Pure Appl. Math., 32:2 (1979), 121–251 | DOI | MR | Zbl
[6] I. Egorova, E. A. Kopylova, G. Teschl, “Dispersion estimates for one-dimensional discrete Schrödinger and wave equations”, J. Spectr. Theory, 5:4 (2015), 663–696 | DOI | MR | Zbl
[7] M. Goldberg, “Transport in the one-dimensional Schrödinger equation”, Proc. Amer. Math. Soc., 135:10 (2007), 3171–3179 | DOI | MR | Zbl
[8] M. Goldberg, W. Schlag, “Dispersive estimates for Schrödinger operators in dimensions one and three”, Comm. Math. Phys., 251:1 (2004), 157–178 | DOI | MR | Zbl
[9] I. M. Guseinov, “O nepreryvnosti koeffitsienta otrazheniya odnomernogo uravneniya Shredingera”, Differents. uravneniya, 21:11 (1985), 1993–1995 | MR | Zbl
[10] M. Keel, T. Tao, “Endpoint Strichartz estimates”, Amer. J. Math., 120:5 (1998), 955–980 | DOI | MR | Zbl
[11] A. I. Komech, E. A. Kopylova, “Weighted energy decay for 1D Klein–Gordon equation”, Comm. Partial Differential Equations, 35:2 (2010), 353–374 | DOI | MR | Zbl
[12] E. A. Kopylova, “Dispersive estimates for the Schrödinger and Klein–Gordon equations”, Russian Math. Surveys, 65:1 (2010), 95–142 | DOI | DOI | MR | Zbl
[13] E. Kopylova, A. I. Komech, “On asymptotic stability of kink for relativistic Ginzburg–Landau equation”, Arch. Ration. Mech. Anal., 202:1 (2011), 213–245 | DOI | MR | Zbl
[14] V. A. Marchenko, Sturm–Liouville operators and applications, rev. ed., AMS Chelsea Publishing, Providence, RI, 2011, xiv+396 pp. | MR | MR | Zbl | Zbl
[15] B. Marshall, W. Strauss, S. Wainger, “$L^p-L^q$ estimates for the Klein–Gordon equation”, J. Math. Pures Appl. (9), 59:4 (1980), 417–440 | MR | Zbl
[16] M. Meyries, M. Veraar, “Sharp embedding results for spaces of smooth functions with power weights”, Studia Math., 208:3 (2012), 257–293 | DOI | MR | Zbl
[17] H. Mizutani, “Dispersive estimates and asymptotic expansions for Schrödinger equations in dimension one”, J. Math. Soc. Japan, 63:1 (2011), 239–261 | DOI | MR | Zbl
[18] M. Murata, “Asymptotic expansions in time for solutions of Schrödinger-type equations”, J. Funct. Anal., 49:1 (1982), 10–56 | DOI | MR | Zbl
[19] F. W. J. Olver, D. W. Lozier, R. F. Boisvert, Ch. W. Clark (eds.), NIST handbook of mathematical functions, Department of Commerce, National Institute of Standards and Technology, Washington, DC; Cambridge Univ. Press, Cambridge, 2010, xvi+951 pp. | MR | Zbl
[20] K. M. Rogers, “Sharp van der Corput estimates and minimal divided differences”, Proc. Amer. Math. Soc., 133:12 (2005), 3543–3550 | DOI | MR | Zbl
[21] W. Schlag, “Dispersive estimates for Schrödinger operators: a survey”, Mathematical aspects of nonlinear dispersive equations, Ann. of Math. Stud., 163, Princeton Univ. Press, Princeton, NJ, 2007, 255–285 | MR | Zbl
[22] A. Soffer, M. I. Weinstein, “Resonances, radiation damping and instability in Hamiltonian nonlinear wave equations”, Invent. Math., 136:1 (1999), 9–74 | DOI | MR | Zbl
[23] G. Teschl, Mathematical methods in quantum mechanics. With applications to Schrödinger operators, Grad. Stud. Math., 157, 2nd ed., Amer. Math. Soc., Providence, RI, 2014, xiv+358 pp. | MR | Zbl
[24] H. Triebel, Interpolation theory, function spaces, differential operators, North-Holland Math. Library, 18, North-Holland Publishing Co., Amsterdam–New York, 1978, 528 pp. ; VEB Deutscher Verlag der Wissenschaften, Berlin, 1978, 528 pp. | MR | MR | MR | Zbl | Zbl | Zbl
[25] R. Weder, “$L^p-L^{\dot{p}}$ estimates for the Schrödinger equation on the line and inverse scattering for the nonlinear Schrödinger equation with a potential”, J. Funct. Anal., 170:1 (2000), 37–68 | DOI | MR | Zbl
[26] R. Weder, “Inverse scattering on the line for the nonlinear Klein–Gordon equation with a potential”, J. Math. Anal. Appl., 252:1 (2000), 102–123 | DOI | MR | Zbl
[27] R. Weder, “The $L^{p}-L^{p'}$ estimate for the Schrödinger equation on the half-line”, J. Math. Anal. Appl., 281:1 (2003), 233–243 | DOI | MR | Zbl
[28] N. Wiener, “Tauberian theorems”, Ann. of Math. (2), 33:1 (1932), 1–100 | DOI | MR | Zbl
[29] K. Yajima, “The $W^{k,p}$-continuity of wave operators for Schrödinger operators”, J. Math. Soc. Japan, 47:3 (1995), 551–581 | DOI | MR | Zbl