Dispersion estimates for one-dimensional Schrödinger and Klein–Gordon equations revisited
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 71 (2016) no. 3, pp. 391-415 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is shown that for a one-dimensional Schrödinger operator with a potential whose first moment is integrable the elements of the scattering matrix are in the unital Wiener algebra of functions with integrable Fourier transforms. This is then used to derive dispersion estimates for solutions of the associated Schrödinger and Klein–Gordon equations. In particular, the additional decay conditions are removed in the case where a resonance is present at the edge of the continuous spectrum. Bibliography: 29 titles.
Keywords: Schrödinger equation, dispersion estimates, scattering.
Mots-clés : Klein–Gordon equation
@article{RM_2016_71_3_a0,
     author = {I. E. Egorova and E. A. Kopylova and V. A. Marchenko and G. Teschl},
     title = {Dispersion estimates for one-dimensional {Schr\"odinger} and {Klein{\textendash}Gordon} equations revisited},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {391--415},
     year = {2016},
     volume = {71},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2016_71_3_a0/}
}
TY  - JOUR
AU  - I. E. Egorova
AU  - E. A. Kopylova
AU  - V. A. Marchenko
AU  - G. Teschl
TI  - Dispersion estimates for one-dimensional Schrödinger and Klein–Gordon equations revisited
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2016
SP  - 391
EP  - 415
VL  - 71
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/RM_2016_71_3_a0/
LA  - en
ID  - RM_2016_71_3_a0
ER  - 
%0 Journal Article
%A I. E. Egorova
%A E. A. Kopylova
%A V. A. Marchenko
%A G. Teschl
%T Dispersion estimates for one-dimensional Schrödinger and Klein–Gordon equations revisited
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2016
%P 391-415
%V 71
%N 3
%U http://geodesic.mathdoc.fr/item/RM_2016_71_3_a0/
%G en
%F RM_2016_71_3_a0
I. E. Egorova; E. A. Kopylova; V. A. Marchenko; G. Teschl. Dispersion estimates for one-dimensional Schrödinger and Klein–Gordon equations revisited. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 71 (2016) no. 3, pp. 391-415. http://geodesic.mathdoc.fr/item/RM_2016_71_3_a0/

[1] J. Bergh, J. Löfström, Interpolation spaces. An introduction, Grundlehren Math. Wiss., 223, Springer-Verlag, Berlin–New York, 1976, x+207 pp. | DOI | MR | MR | Zbl

[2] V. S. Buslaev, C. Sulem, “On asymptotic stability of solitary waves for nonlinear Schrödinger equations”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 20:3 (2003), 419–475 | DOI | MR | Zbl

[3] S. Cuccagna, “On dispersion for Klein Gordon equation with periodic potential in 1D”, Hokkaido Math. J., 37:4 (2008), 627–645 | DOI | MR | Zbl

[4] P. D'Ancona, L. Fanelli, “$L^p$-boundedness of the wave operator for the one dimensional Schrödinger operator”, Comm. Math. Phys., 268:2 (2006), 415–438 | DOI | MR | Zbl

[5] P. Deift, E. Trubowitz, “Inverse scattering on the line”, Comm. Pure Appl. Math., 32:2 (1979), 121–251 | DOI | MR | Zbl

[6] I. Egorova, E. A. Kopylova, G. Teschl, “Dispersion estimates for one-dimensional discrete Schrödinger and wave equations”, J. Spectr. Theory, 5:4 (2015), 663–696 | DOI | MR | Zbl

[7] M. Goldberg, “Transport in the one-dimensional Schrödinger equation”, Proc. Amer. Math. Soc., 135:10 (2007), 3171–3179 | DOI | MR | Zbl

[8] M. Goldberg, W. Schlag, “Dispersive estimates for Schrödinger operators in dimensions one and three”, Comm. Math. Phys., 251:1 (2004), 157–178 | DOI | MR | Zbl

[9] I. M. Guseinov, “O nepreryvnosti koeffitsienta otrazheniya odnomernogo uravneniya Shredingera”, Differents. uravneniya, 21:11 (1985), 1993–1995 | MR | Zbl

[10] M. Keel, T. Tao, “Endpoint Strichartz estimates”, Amer. J. Math., 120:5 (1998), 955–980 | DOI | MR | Zbl

[11] A. I. Komech, E. A. Kopylova, “Weighted energy decay for 1D Klein–Gordon equation”, Comm. Partial Differential Equations, 35:2 (2010), 353–374 | DOI | MR | Zbl

[12] E. A. Kopylova, “Dispersive estimates for the Schrödinger and Klein–Gordon equations”, Russian Math. Surveys, 65:1 (2010), 95–142 | DOI | DOI | MR | Zbl

[13] E. Kopylova, A. I. Komech, “On asymptotic stability of kink for relativistic Ginzburg–Landau equation”, Arch. Ration. Mech. Anal., 202:1 (2011), 213–245 | DOI | MR | Zbl

[14] V. A. Marchenko, Sturm–Liouville operators and applications, rev. ed., AMS Chelsea Publishing, Providence, RI, 2011, xiv+396 pp. | MR | MR | Zbl | Zbl

[15] B. Marshall, W. Strauss, S. Wainger, “$L^p-L^q$ estimates for the Klein–Gordon equation”, J. Math. Pures Appl. (9), 59:4 (1980), 417–440 | MR | Zbl

[16] M. Meyries, M. Veraar, “Sharp embedding results for spaces of smooth functions with power weights”, Studia Math., 208:3 (2012), 257–293 | DOI | MR | Zbl

[17] H. Mizutani, “Dispersive estimates and asymptotic expansions for Schrödinger equations in dimension one”, J. Math. Soc. Japan, 63:1 (2011), 239–261 | DOI | MR | Zbl

[18] M. Murata, “Asymptotic expansions in time for solutions of Schrödinger-type equations”, J. Funct. Anal., 49:1 (1982), 10–56 | DOI | MR | Zbl

[19] F. W. J. Olver, D. W. Lozier, R. F. Boisvert, Ch. W. Clark (eds.), NIST handbook of mathematical functions, Department of Commerce, National Institute of Standards and Technology, Washington, DC; Cambridge Univ. Press, Cambridge, 2010, xvi+951 pp. | MR | Zbl

[20] K. M. Rogers, “Sharp van der Corput estimates and minimal divided differences”, Proc. Amer. Math. Soc., 133:12 (2005), 3543–3550 | DOI | MR | Zbl

[21] W. Schlag, “Dispersive estimates for Schrödinger operators: a survey”, Mathematical aspects of nonlinear dispersive equations, Ann. of Math. Stud., 163, Princeton Univ. Press, Princeton, NJ, 2007, 255–285 | MR | Zbl

[22] A. Soffer, M. I. Weinstein, “Resonances, radiation damping and instability in Hamiltonian nonlinear wave equations”, Invent. Math., 136:1 (1999), 9–74 | DOI | MR | Zbl

[23] G. Teschl, Mathematical methods in quantum mechanics. With applications to Schrödinger operators, Grad. Stud. Math., 157, 2nd ed., Amer. Math. Soc., Providence, RI, 2014, xiv+358 pp. | MR | Zbl

[24] H. Triebel, Interpolation theory, function spaces, differential operators, North-Holland Math. Library, 18, North-Holland Publishing Co., Amsterdam–New York, 1978, 528 pp. ; VEB Deutscher Verlag der Wissenschaften, Berlin, 1978, 528 pp. | MR | MR | MR | Zbl | Zbl | Zbl

[25] R. Weder, “$L^p-L^{\dot{p}}$ estimates for the Schrödinger equation on the line and inverse scattering for the nonlinear Schrödinger equation with a potential”, J. Funct. Anal., 170:1 (2000), 37–68 | DOI | MR | Zbl

[26] R. Weder, “Inverse scattering on the line for the nonlinear Klein–Gordon equation with a potential”, J. Math. Anal. Appl., 252:1 (2000), 102–123 | DOI | MR | Zbl

[27] R. Weder, “The $L^{p}-L^{p'}$ estimate for the Schrödinger equation on the half-line”, J. Math. Anal. Appl., 281:1 (2003), 233–243 | DOI | MR | Zbl

[28] N. Wiener, “Tauberian theorems”, Ann. of Math. (2), 33:1 (1932), 1–100 | DOI | MR | Zbl

[29] K. Yajima, “The $W^{k,p}$-continuity of wave operators for Schrödinger operators”, J. Math. Soc. Japan, 47:3 (1995), 551–581 | DOI | MR | Zbl