Mots-clés : trace formulae.
@article{RM_2016_71_2_a2,
author = {F. R\u{a}dulescu},
title = {Endomorphisms of spaces of virtual~vectors fixed by a~discrete group},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {291--343},
year = {2016},
volume = {71},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2016_71_2_a2/}
}
F. Rădulescu. Endomorphisms of spaces of virtual vectors fixed by a discrete group. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 71 (2016) no. 2, pp. 291-343. http://geodesic.mathdoc.fr/item/RM_2016_71_2_a2/
[1] A. N. Andrianov, Quadratic forms and Hecke operators, Grundlehren Math. Wiss., 286, Springer-Verlag, Berlin, 1987, xii+374 pp. | MR | Zbl
[2] M. B. Bekka, R. Curtis, P. de la Harpe, “Familles de graphes expanseurs et paires de Hecke”, C. R. Math. Acad. Sci. Paris, 335:5 (2002), 463–468 | DOI | MR | Zbl
[3] F. A. Berezin, “Quantization”, Math. USSR-Izv., 8:5 (1974), 1109–1165 | DOI | MR | Zbl
[4] M. W. Binder, “Induced factor representations of discrete groups and their types”, J. Funct. Anal., 115:2 (1993), 294–312 | DOI | MR | Zbl
[5] F. Boca, V. Niţică, “Combinatorial properties of groups and simple $C^*$-algebras with a unique trace”, J. Operator Theory, 20:1 (1988), 183–196 | MR | Zbl
[6] A. Borel, “Admissible representations of a semi-simple group over a local field with vectors fixed under an Iwahori subgroup”, Invent. Math., 35 (1976), 233–259 | DOI | MR | Zbl
[7] J.-B. Bost, A. Connes, “Hecke algebras, type III factors and phase transitions with spontaneous symmetry breaking in number theory”, Selecta Math. (N. S.), 1:3 (1995), 411–457 | DOI | MR | Zbl
[8] L. Bowen, “Invariant random subgroups of the free group”, Groups Geom. Dyn., 9:3 (2015), 891–916 ; (2014 (v1 – 2012)), 17 pp., arXiv: 1204.5939 | DOI | MR | Zbl
[9] L. Bowen, R. Grigorchuk, R. Kravchenko, Characteristic random subgroups of geometric groups and free abelian groups of infinite rank, 2015 (v1 – 2014), 32 pp., arXiv: 1402.3705
[10] N. P. Brown, N. Ozawa, $C^{\,*}$-algebras and finite-dimensional approximations, Grad. Texts in Math., 88, Amer. Math. Soc., Providence, RI, 2008, xvi+509 pp. | DOI | MR | Zbl
[11] M. Burger, J.-S. Li, P. Sarnak, “Ramanujan duals and automorphic spectrum”, Bull. Amer. Math. Soc. (N. S.), 26:2 (1992), 253–257 | DOI | MR | Zbl
[12] P. Cartier, “Representations of $\mathfrak p$-adic groups: a survey”, Automorphic forms, representations and $L$-functions, Part 1 (Oregon State Univ., Corvallis, OR, 1977), Proc. Sympos. Pure Math., 33, Amer. Math. Soc., Providence, RI, 1979, 111–155 | DOI | MR | Zbl
[13] W. Casselman, “Harmonic analysis of the Schwartz space of $\Gamma\backslash\operatorname{SL}_2(\mathbb R)$”, Contributions to automorphic forms, geometry, and number theory, Johns Hopkins Univ. Press, Baltimore, MD, 2004, 163–192 | MR | Zbl
[14] R. Curtis, “Hecke algebras associated with induced representations”, C. R. Math. Acad. Sci. Paris, 334:1 (2002), 31–35 | DOI | MR | Zbl
[15] P. Deligne, “La conjecture de Weil. I”, Inst. Hautes Études Sci. Publ. Math., 43 (1974), 273–307 | DOI | MR | Zbl
[16] A. Dudko, K. Medynets, “Finite factor representations of Higman–Thompson groups”, Groups Geom. Dyn., 8:2 (2014), 375–389 | DOI | MR | Zbl
[17] I. M. Gel'fand, M. I. Graev, I. Pyatetskii-Shapiro, Representation theory and automorphic functions, W. B. Saunders Co., Philadelphia, PA–London–Toronto, ON, 1969, xvi+426 pp. | MR | MR | Zbl | Zbl
[18] I. M. Gel'fand, N. Ja. Vilenkin, Generalized functions, v. 4, Applications of harmonic analysis, Academic Press, New York–London, 1964, xiv+384 pp. | MR | MR | Zbl | Zbl
[19] F. M. Goodman, P. de la Harpe, V. F. R. Jones, Coxeter graphs and towers of algebras, Math. Sci. Res. Inst. Publ., 14, Springer-Verlag, New York, 1989, x+288 pp. | DOI | MR | Zbl
[20] U. Haagerup, T. Steenstrup, R. Szwarc, “Schur multipliers and spherical functions on homogeneous trees”, Internat. J. Math., 21:10 (2010), 1337–1382 | DOI | MR | Zbl
[21] R. W. Hall, Hecke $\mathrm C^*$-algebras, Thesis (Ph. D.), Pennsylvania State Univ., 1999, 128 pp. | MR
[22] Harish-Chandra, “Plancherel formula for the $2\times 2$ real unimodular group”, Proc. Nat. Acad. Sci. U. S. A., 38 (1952), 337–342 | DOI | MR | Zbl
[23] E. Hecke, Lectures on Dirichlet series, modular functions and quadratic forms, Vandenhoeck Ruprecht, Göttingen, 1983, 98 pp. | MR | Zbl
[24] D. A. Hejhal, The Selberg trace formula for $\mathrm{PSL}(2,\mathbb R)$, v. I, Lecture Notes in Math., 548, Springer-Verlag, Berlin–New York, 1976, vi+516 pp. | DOI | MR | Zbl
[25] V. F. R. Jones, “Index for subfactors”, Invent. Math., 72:1 (1983), 1–25 | DOI | MR | Zbl
[26] S. Kaliszewski, B. L. Magnus, J. Quigg, “Hecke $C^*$-algebras and semi-direct products”, Proc. Edinb. Math. Soc. (2), 52:1 (2009), 127–153 | DOI | MR | Zbl
[27] A. S. Kechris, “Unitary representations and modular actions”, Teoriya predstavlenii, dinamicheskie sistemy, kombinatornye i algoritmicheskie metody. XIII, Zap. nauch. sem. POMI, 326, POMI, SPb., 2005, 97–144 ; J. Math. Sci. (N. Y.), 140:3 (2007), 398–425 | MR | Zbl | DOI
[28] A. Krieg, Hecke algebras, Mem. Amer. Math. Soc., 87, No 435, Amer. Math. Soc., Providence, RI, 1990, x+158 pp. | MR | Zbl
[29] M. Laca, N. S. Larsen, S. Neshveyev, “Phase transition in the Connes–Marcolli $\mathrm{GL_2}$-system”, J. Noncommut. Geom., 1:4 (2007), 397–430 | DOI | MR | Zbl
[30] S. Lang, $\mathrm{SL}_2(\mathbb R)$, Grad. Texts in Math., 105, Springer-Verlag, New York, 1985, xiv+428 pp. | MR | Zbl
[31] H. Maass, Lectures on modular functions of one complex variable, With notes by S. Lal, Tata Inst. Fund. Res. Stud. Lectures on Math. and Phys., 29, 2nd ed., Tata Inst. Fund. Res., Bombay, 1983, iii+262 pp. | MR | Zbl
[32] Yu. A. Neretin, “Plancherel formula for Berezin deformation of $L^2$ on Riemannian symmetric space”, J. Funct. Anal., 189:2 (2002), 336–408 | DOI | MR | Zbl
[33] J. Peterson, A. Thom, “Character rigidity for special linear groups”, J. Reine Angew. Math., 1–22, publ. online 11.03.2014 | DOI
[34] H. Petersson, “Über automorphe Formen mit Singularitäten im Diskontinuitätsgebiet”, Math. Ann., 129 (1955), 370–390 | DOI | MR | Zbl
[35] G. Pisier, Introduction to operator space theory, London Math. Soc. Lecture Note Ser., 294, Cambridge Univ. Press, Cambridge, 2003, viii+478 pp. | DOI | MR | Zbl
[36] F. Rădulescu, The $\Gamma$-equivariant form of the Berezin quantization of the upper half plane, Mem. Amer. Math. Soc., 133, No 630, Amer. Math. Soc., Providence, RI, 1998, viii+70 pp. | MR | Zbl
[37] F. Rădulescu, Type II$_1$ von Neumann representations for Hecke operators on Maass forms and Ramanujan–Petersson conjecture, 2013 (v1 – 2008), 43 pp., arXiv: 0802.3548
[38] F. Rădulescu, “Conditional expectations, traces, angles between spaces and representations of the Hecke algebras”, Lib. Math. (N. S.), 33:2 (2013), 65–95 | MR | Zbl
[39] F. Rădulescu, The operator algebra content of the Ramanujan–Petersson problem, 2014 (v1 – 2013), 53 pp., arXiv: 1306.4232
[40] F. Rădulescu, “Free group factors and Hecke operators”, The varied landscape of operator theory, Theta Ser. Adv. Math., Theta, Bucharest, 2014, 241–257 | MR | Zbl
[41] F. Rădulescu, “On the countable measure-preserving relation induced on a homogeneous quotient by the action of a discrete group”, Complex Anal. Oper. Theory, 9:7 (2015), 1633–1662 | DOI | MR | Zbl
[42] J. Repka, “Tensor products of holomorphic discrete series representations”, Canad. J. Math., 31:4 (1979), 836–844 | DOI | MR | Zbl
[43] J. Roe, “On the quasi-isometry invariance of $L^2$ Betti numbers”, Duke Math. J., 59:3 (1989), 765–783 | DOI | MR | Zbl
[44] S. Sakai, $\mathrm C^*$-algebras and $\mathrm W^*$-algebras, Classics Math., reprint of 1st (1971) ed., Springer-Verlag, Berlin, 1998, xii+256 pp. | DOI | MR | Zbl
[45] P. J. Sally, Jr., J. A. Shalika, “Characters of the discrete series of representations of $SL(2)$ over a local field”, Proc. Nat. Acad. Sci. U.S.A., 61 (1968), 1231–1237 | DOI | MR | Zbl
[46] P. Sarnak, Some applications of modular forms, Cambridge Tracts in Math., 99, Cambridge Univ. Press, Cambridge, 1990, x+111 pp. | DOI | MR | Zbl
[47] P. Sarnak, “Notes on the generalized Ramanujan conjectures”, Harmonic analysis, the trace formula, and Shimura varieties, Clay Math. Proc., 4, Amer. Math. Soc., Providence, RI, 2005, 659–685 | MR | Zbl
[48] G. Schlichting, “Operationen mit periodischen Stabilisatoren”, Arch. Math. (Basel), 34:2 (1980), 97–99 | DOI | MR | Zbl
[49] F. Shahidi, “$L$-functions and representation theory of $p$-adic groups”, $p$-adic methods and their applications, Oxford Sci. Publ., Oxford Univ. Press, New York, 1992, 91–112 | MR | Zbl
[50] M. Takesaki, Theory of operator algebras I, Encyclopaedia Math. Sci., 124, Oper. Alg. Non-Commut. Geom., V, reprint of the 1st (1979) ed., Springer-Verlag, Berlin, 2002, xx+415 pp. | MR | Zbl
[51] K. Tzanev, “Hecke $C^*$-algebras and amenability”, J. Operator Theory, 50:1 (2003), 169–178 | MR | Zbl
[52] A. M. Vershik, “Nonfree actions of countable groups and their characters”, J. Math. Sci. (N. Y.), 174:1 (2011), 1–6 | DOI | MR | Zbl
[53] D. Zagier, Traces des opérateurs de Hecke. Théorie des nombres, Séminaire Delange–Pisot–Poitou, 17e année: 1975/76, fasc. 2, exp. No 23, Secrétariat Math., Paris, 1977, 12 pp. | MR | Zbl