Mots-clés : Birkhoff billiards
@article{RM_2016_71_2_a1,
author = {V. V. Kozlov},
title = {Polynomial conservation laws for the {Lorentz} gas and the {Boltzmann{\textendash}Gibbs} gas},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {253--290},
year = {2016},
volume = {71},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2016_71_2_a1/}
}
V. V. Kozlov. Polynomial conservation laws for the Lorentz gas and the Boltzmann–Gibbs gas. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 71 (2016) no. 2, pp. 253-290. http://geodesic.mathdoc.fr/item/RM_2016_71_2_a1/
[1] R. H. Fowler, E. A. Guggenheim, Statistical thermodynamics, Cambridge Univ. Press, Cambridge, 1939, x+693 pp. | Zbl
[2] F. A. Berezin, Lektsii po statisticheskoi fizike, In-t kompyuternykh issledovanii, M.–Izhevsk, 2002, 192 pp.
[3] V. V. Kozlov, “Canonical Gibbs distribution and thermodynamics of mechanical systems with a finite number of degrees of freedom”, Regul. Chaotic Dyn., 4:2 (1999), 44–54 | DOI | MR | Zbl
[4] N. Simányi, “Ergodicity of hard spheres in a box”, Ergodic Theory Dynam. Systems, 19:3 (1999), 741–766 | DOI | MR | Zbl
[5] D. Szász, “Boltzmann's ergodic hypothesis, a conjecture for centuries?”, Hard ball systems and the Lorentz gas, Encyclopaedia Math. Sci., 101, Springer, Berlin, 2000, 421–446 | DOI | MR | Zbl
[6] Ya. G. Sinai, “Dynamical systems with elastic reflections. Ergodic properties of dispersing billiards”, Russian Math. Surveys, 25:2 (1970), 137–189 | DOI | MR | Zbl
[7] Ya. G. Sinai, N. I. Chernov, “Ergodic properties of certain systems of two-dimensional discs and three-dimensional balls”, Russian Math. Surveys, 42:3 (1987), 181–207 | DOI | MR | Zbl
[8] A. Krámli, N. Simányi, D. Szász, “The $K$-property of three billiard balls”, Ann. of Math. (2), 133:1 (1991), 37–72 | DOI | MR | Zbl
[9] A. Krámli, N. Simányi, D. Szász, “The $K$-property of four billiard balls”, Comm. Math. Phys., 144:1 (1992), 107–148 | DOI | MR | Zbl
[10] N. Simányi, “The $K$-property of $N$ billiard balls I”, Invent. Math., 108:3 (1992), 521–548 | DOI | MR | Zbl
[11] N. Simányi, “Proof of the Boltzmann–Sinai ergodic hypothesis for typical hard disk systems”, Invent. Math., 154 (2003), 123–178 | DOI | MR | Zbl
[12] N. Simányi, “Conditional proof of the Boltzmann–Sinai ergodic hypothesis”, Invent. Math., 177:2 (2009), 381–413 | DOI | MR | Zbl
[13] V. V. Kozlov, “On justification of Gibbs distribution”, Regul. Chaotic Dyn., 7:1 (2002), 1–10 | DOI | MR | Zbl
[14] V. V. Kozlov, Teplovoe ravnovesie po Gibbsu i Puankare, M.–Izhevsk, In-t kompyuternykh issledovanii, 2002, 320 pp. | MR | Zbl
[15] G. D. Birkhoff, Dynamical systems, Amer. Math. Soc. Colloq. Publ., 9, Amer. Math. Soc., Providence, RI, 1927, viii+295 pp. | MR | Zbl | Zbl
[16] V. Dragović, M. Radnović, “Integrable billiards and quadrics”, Russian Math. Surveys, 65:2 (2010), 319–379 | DOI | DOI | MR | Zbl
[17] V. V. Kozlov, Symmetries, topology and resonances in Hamiltonian mechanics, Ergeb. Math. Grenzgeb. 3. Folge / A Series of Modern Surveys in Mathematics, 31, Springer-Verlag, Berlin, 1996, xi+378 pp. | DOI | MR | MR | Zbl | Zbl
[18] J. Patera, R. T. Sharp, P. Winternitz, H. Zassenhaus, “Invariants of real low dimension Lie algebras”, J. Math. Phys., 17:6 (1976), 986–994 | DOI | MR | Zbl
[19] J. F. Cariñena, A. Ibort, G. Marmo, A. Perelomov, “On the geometry of Lie algebras and Poisson tensors”, J. Phys. A, 27:22 (1994), 7425–7449 | DOI | MR | Zbl
[20] V. V. Kozlov, “Rational integrals of quasi-homogeneous dynamical systems”, J. Appl. Math. Mech., 79:3 (2015), 209–216 | DOI
[21] V. V. Kozlov, “On rational integrals of geodesic flows”, Regul. Chaotic Dyn., 19:6 (2014), 601–606 | DOI | MR | Zbl
[22] L. A. Bunimovich, Ya. G. Sinai, “Statistical properties of Lorentz gas with periodic configuration of scatterers”, Comm. Math. Phys., 78:4 (1980/81), 479–497 | DOI | MR | Zbl
[23] N. Simányi, “Hard ball systems and semi-dispersive billiards: hyperbolicity and ergodicity”, Hard ball systems and the Lorentz gas, Encyclopaedia Math. Sci., 101, Springer, Berlin, 2000, 51–88 | DOI | MR | Zbl
[24] V. M. Babič, V. S. Buldyrev, Short-wavelength diffraction theory. Asymptotic methods, Springer Series on Wave Phenomena, 4, Springer-Verlag, Berlin, 1991, xi+445 pp. | MR | MR | Zbl | Zbl
[25] V. V. Kozlov, D. V. Treshchev, Billiards. A genetic introduction to the dynamics of systems with impacts, Transl. Math. Monogr., 89, Amer. Math. Soc., Providence, RI, 1991, viii+171 pp. | MR | MR | Zbl | Zbl
[26] A. A. Markeev, “The method of pointwise mappings in the stability problem of two-segment trajectories of the Birkhoff billiards”, Dynamical systems in classical mechanics, Amer. Math. Soc. Transl. Ser. 2, 168, Amer. Math. Soc., Providence, RI, 1995, 211–226 | MR | Zbl
[27] V. V. Kozlov, “Problem of stability of two-link trajectories in a multidimensional Birkhoff billiard”, Proc. Steklov Inst. Math., 273 (2011), 196–213 | DOI | MR | Zbl
[28] S. Tabachnikov, Geometry and billiards, Stud. Math. Libr., 30, Amer. Math. Soc., Providence, RI; Mathematics Advanced Study Semesters, University Park, PA, 2005, xii+176 pp. | DOI | MR | Zbl
[29] V. Dragović, M. Radnović, Poncelet porisms and beyond. Integrable billiards, hyperelliptic Jacobians and pencils of quadrics, Front. Math., Birkhäuser, Basel, 2011, vii+293 pp. | DOI | MR | Zbl
[30] V. I. Dragović, M. Radnović, “Pseudo-integrable billiards and double reflection nets”, Russian Math. Surveys, 70:1 (2015), 1–31 | DOI | DOI | MR | Zbl
[31] V. I. Arnol'd, “Small denominators and problems of stability of motion in classical and celestial mechanics”, Russian Math. Surveys, 18:6 (1963), 85–191 | DOI | MR | Zbl
[32] D. Burago, S. Ferleger, A. Kononenko, “A geometric approach to semi-dispersing billiards”, Hard ball systems and the Lorentz gas, Encyclopaedia Math. Sci., 101, Springer, Berlin, 2000, 9–27 | DOI | MR | Zbl
[33] V. V. Kozlov, “Topological obstructions to the integrability of natural mechanical systems”, Soviet Math. Dokl., 20 (1979), 1413–1415 | MR | Zbl
[34] S. V. Bolotin, “First integrals of systems with elastic reflections”, Mosc. Univ. Math. Bull., 43:6 (1988), 10–14 | MR | Zbl
[35] V. N. Kolokoltsov, “Geodesic flows on two-dimensional manifolds with an additional first integral that is polynomial in the velocities”, Math. USSR-Izv., 21:2 (1983), 291–306 | DOI | MR | Zbl
[36] I. A. Taimanov, “Topological obstructions to integrability of geodesic flows on non-simply-connected manifolds”, Math. USSR-Izv., 30:2 (1988), 403–409 | DOI | MR | Zbl
[37] I. A. Taimanov, “O topologicheskikh svoistvakh integriruemykh geodezicheskikh potokov”, Matem. zametki, 44:2 (1988), 283–284 | MR | Zbl
[38] G. Paternain, “Entropy and completely integrable Hamiltonian systems”, Proc. Amer. Math. Soc., 113:3 (1991), 871–873 | DOI | MR | Zbl
[39] G. P. Paternain, “On the topology of manifolds with completely integrable geodesic flows”, Ergodic Theory Dynam. Systems, 12:1 (1992), 109–121 | DOI | MR | Zbl
[40] S. V. Bolotin, P. H. Rabinowitz, “A variational construction of chaotic trajectories for a reversible Hamiltonian systems”, J. Differential Equations, 148:2 (1998), 364–387 | DOI | MR | Zbl
[41] S. L. Tabachnikov, “Dual billiards”, Russian Math. Surveys, 48:6 (1993), 81–109 | DOI | MR | Zbl
[42] A. Plakhov, Exterior billiards. Systems with impacts outside bounded domains, Springer, New York, 2012, xiv+284 pp. | DOI | MR | Zbl
[43] S. V. Bolotin, “Integrable billiards on surfaces of constant curvature”, Math. Notes, 51:2 (1992), 117–123 | DOI | MR | Zbl
[44] J. A. Thorpe, Elementary topics in differential geometry, Undergrad. Texts Math., Springer-Verlag, New York–Heidelberg, 1979, xiii+253 pp. | MR | MR | Zbl | Zbl
[45] H. Poincaré, “Réflections sur la théorie cinétique des gaz”, J. Phys. Théor. Appl. (4), 5 (1906), 369–403 | DOI | MR | Zbl | Zbl
[46] V. V. Kozlov, “Kinetics of collisionless continuous medium”, Regul. Chaotic Dyn., 6:3 (2001), 235–251 | DOI | MR | Zbl
[47] V. V. Kozlov, “Conservation laws of generalized billiards that are polynomial in momenta”, Russ. J. Math. Phys., 21:2 (2014), 226–241 | DOI | MR | Zbl
[48] V. V. Kozlov, D. V. Treshchev, “Weak convergence of solutions of the Liouville equation for nonlinear Hamiltonian systems”, Theoret. and Math. Phys., 134:3 (2003), 339–350 | DOI | DOI | MR | Zbl
[49] V. F. Lazutkin, Vypuklyi billiard i sobstvennye funktsii operatora Laplasa, Izd-vo LGU, L., 1981, 196 pp. | MR | Zbl
[50] S. V. Bolotin, “Nonintegrability of the $N$-center problem for $N>2$”, Mosc. Univ. Mech. Bull., 39:3 (1984), 24–28 | MR | Zbl
[51] L. Boltzmann, Vorlesungen über Gastheorie, v. 1, 2, J. A. Barth, Leipzig, 1896, 1898, vi+204 pp., x+265 pp. | Zbl
[52] E. Friedman, Erich's packing center, [15.02.2016] ,\par http://www2.stetson.edu/~efriedma/packing.html
[53] S. V. Bolotin, D. V. Treschev, “The anti-integrable limit”, Russian Math. Surveys, 70:6 (2015), 975–1030 | DOI | DOI | MR
[54] E. T. Wittaker, A treatise on the analytical dynamics of particles and rigid bodies. With an introduction to the problem of three bodies, 4th ed., Cambridge Univ. Press, Cambridge, 1937, xx+456 pp. | DOI | MR | Zbl | Zbl
[55] C. L. Siegel, “Über die algebraischen Integrale des restringierten Dreikörperproblems”, Trans. Amer. Math. Soc., 39:2 (1936), 225–233 | DOI | MR | Zbl
[56] B. Kruglikov, V. S. Matveev, The geodesic flow of a generic metric does not admit nontrivial integrals polynomial in momenta, 2015, 12 pp., arXiv: 1510.01493
[57] D. Treschev, “Billiard map and rigid rotation”, Phys. D, 255 (2013), 31–34 | DOI | MR | Zbl
[58] D. V. Treschev, “On a conjugacy problem in billiard dynamics”, Proc. Steklov Inst. Math., 289 (2015), 291–299 | DOI | DOI
[59] S. V. Bolotin, “Integrable Birkhoff billiards”, Mosc. Univ. Mech. Bull., 45:2 (1990), 10–13 | MR | Zbl
[60] M. Bialy, A. E. Mironov, Algebraic Birkhoff conjecture for billiards on sphere and hyperbolic plane, 2016, 10 pp., arXiv: 1602.05698
[61] M. Bialy, A. E. Mironov, Angular billiard and algebraic Birkhoff conjecture, 2016, 20 pp., arXiv: 1601.03196
[62] L. A. Bunimovich, “On the ergodic properties of nowhere dispersing billiards”, Comm. Math. Phys., 65:3 (1979), 295–312 | DOI | MR | Zbl