Polynomial conservation laws for the Lorentz gas and the Boltzmann--Gibbs gas
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 71 (2016) no. 2, pp. 253-290

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of conditions ensuring the existence of first integrals that are polynomials in the momenta (velocities) is considered for certain multidimensional billiard systems which play an important role in non-equilibrium statistical mechanics. These are the Lorentz gas, a particle in a Euclidean space with (not necessarily convex) scattering domains, and the Boltzmann–Gibbs gas, a system of small identical balls in a rectangular box which collide elastically with one another and the walls of the box. The ergodic properties of such systems are only partially understood: some problems are still waiting for solution, and in certain cases (for instance, when the scatterers are non-convex) the system is known not to be ergodic. An approach to showing the absence of a non-trivial polynomial first integral with continuously differentiable coefficients is developed. The known first integrals for integrable problems in dynamics are mostly polynomials in the momenta (or functions of polynomials). The investigation of multidimensional billiards with non-compact configuration space, when there is no hope for ergodic behaviour, is of particular interest. Applications of the general results on the absence of non-trivial polynomial integrals to problems in statistical mechanics are discussed. Bibliography: 62 titles.
Keywords: Lorentz gas, Boltzmann–Gibbs gas, polynomial integral, topological obstructions to integrability, elastic reflection, KAM theory.
Mots-clés : Birkhoff billiards
@article{RM_2016_71_2_a1,
     author = {V. V. Kozlov},
     title = {Polynomial conservation laws for the {Lorentz} gas and the {Boltzmann--Gibbs} gas},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {253--290},
     publisher = {mathdoc},
     volume = {71},
     number = {2},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2016_71_2_a1/}
}
TY  - JOUR
AU  - V. V. Kozlov
TI  - Polynomial conservation laws for the Lorentz gas and the Boltzmann--Gibbs gas
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2016
SP  - 253
EP  - 290
VL  - 71
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_2016_71_2_a1/
LA  - en
ID  - RM_2016_71_2_a1
ER  - 
%0 Journal Article
%A V. V. Kozlov
%T Polynomial conservation laws for the Lorentz gas and the Boltzmann--Gibbs gas
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2016
%P 253-290
%V 71
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_2016_71_2_a1/
%G en
%F RM_2016_71_2_a1
V. V. Kozlov. Polynomial conservation laws for the Lorentz gas and the Boltzmann--Gibbs gas. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 71 (2016) no. 2, pp. 253-290. http://geodesic.mathdoc.fr/item/RM_2016_71_2_a1/