Polynomial conservation laws for the Lorentz gas and the Boltzmann–Gibbs gas
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 71 (2016) no. 2, pp. 253-290 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of conditions ensuring the existence of first integrals that are polynomials in the momenta (velocities) is considered for certain multidimensional billiard systems which play an important role in non-equilibrium statistical mechanics. These are the Lorentz gas, a particle in a Euclidean space with (not necessarily convex) scattering domains, and the Boltzmann–Gibbs gas, a system of small identical balls in a rectangular box which collide elastically with one another and the walls of the box. The ergodic properties of such systems are only partially understood: some problems are still waiting for solution, and in certain cases (for instance, when the scatterers are non-convex) the system is known not to be ergodic. An approach to showing the absence of a non-trivial polynomial first integral with continuously differentiable coefficients is developed. The known first integrals for integrable problems in dynamics are mostly polynomials in the momenta (or functions of polynomials). The investigation of multidimensional billiards with non-compact configuration space, when there is no hope for ergodic behaviour, is of particular interest. Applications of the general results on the absence of non-trivial polynomial integrals to problems in statistical mechanics are discussed. Bibliography: 62 titles.
Keywords: Lorentz gas, Boltzmann–Gibbs gas, polynomial integral, topological obstructions to integrability, elastic reflection, KAM theory.
Mots-clés : Birkhoff billiards
@article{RM_2016_71_2_a1,
     author = {V. V. Kozlov},
     title = {Polynomial conservation laws for the {Lorentz} gas and the {Boltzmann{\textendash}Gibbs} gas},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {253--290},
     year = {2016},
     volume = {71},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2016_71_2_a1/}
}
TY  - JOUR
AU  - V. V. Kozlov
TI  - Polynomial conservation laws for the Lorentz gas and the Boltzmann–Gibbs gas
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2016
SP  - 253
EP  - 290
VL  - 71
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/RM_2016_71_2_a1/
LA  - en
ID  - RM_2016_71_2_a1
ER  - 
%0 Journal Article
%A V. V. Kozlov
%T Polynomial conservation laws for the Lorentz gas and the Boltzmann–Gibbs gas
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2016
%P 253-290
%V 71
%N 2
%U http://geodesic.mathdoc.fr/item/RM_2016_71_2_a1/
%G en
%F RM_2016_71_2_a1
V. V. Kozlov. Polynomial conservation laws for the Lorentz gas and the Boltzmann–Gibbs gas. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 71 (2016) no. 2, pp. 253-290. http://geodesic.mathdoc.fr/item/RM_2016_71_2_a1/

[1] R. H. Fowler, E. A. Guggenheim, Statistical thermodynamics, Cambridge Univ. Press, Cambridge, 1939, x+693 pp. | Zbl

[2] F. A. Berezin, Lektsii po statisticheskoi fizike, In-t kompyuternykh issledovanii, M.–Izhevsk, 2002, 192 pp.

[3] V. V. Kozlov, “Canonical Gibbs distribution and thermodynamics of mechanical systems with a finite number of degrees of freedom”, Regul. Chaotic Dyn., 4:2 (1999), 44–54 | DOI | MR | Zbl

[4] N. Simányi, “Ergodicity of hard spheres in a box”, Ergodic Theory Dynam. Systems, 19:3 (1999), 741–766 | DOI | MR | Zbl

[5] D. Szász, “Boltzmann's ergodic hypothesis, a conjecture for centuries?”, Hard ball systems and the Lorentz gas, Encyclopaedia Math. Sci., 101, Springer, Berlin, 2000, 421–446 | DOI | MR | Zbl

[6] Ya. G. Sinai, “Dynamical systems with elastic reflections. Ergodic properties of dispersing billiards”, Russian Math. Surveys, 25:2 (1970), 137–189 | DOI | MR | Zbl

[7] Ya. G. Sinai, N. I. Chernov, “Ergodic properties of certain systems of two-dimensional discs and three-dimensional balls”, Russian Math. Surveys, 42:3 (1987), 181–207 | DOI | MR | Zbl

[8] A. Krámli, N. Simányi, D. Szász, “The $K$-property of three billiard balls”, Ann. of Math. (2), 133:1 (1991), 37–72 | DOI | MR | Zbl

[9] A. Krámli, N. Simányi, D. Szász, “The $K$-property of four billiard balls”, Comm. Math. Phys., 144:1 (1992), 107–148 | DOI | MR | Zbl

[10] N. Simányi, “The $K$-property of $N$ billiard balls I”, Invent. Math., 108:3 (1992), 521–548 | DOI | MR | Zbl

[11] N. Simányi, “Proof of the Boltzmann–Sinai ergodic hypothesis for typical hard disk systems”, Invent. Math., 154 (2003), 123–178 | DOI | MR | Zbl

[12] N. Simányi, “Conditional proof of the Boltzmann–Sinai ergodic hypothesis”, Invent. Math., 177:2 (2009), 381–413 | DOI | MR | Zbl

[13] V. V. Kozlov, “On justification of Gibbs distribution”, Regul. Chaotic Dyn., 7:1 (2002), 1–10 | DOI | MR | Zbl

[14] V. V. Kozlov, Teplovoe ravnovesie po Gibbsu i Puankare, M.–Izhevsk, In-t kompyuternykh issledovanii, 2002, 320 pp. | MR | Zbl

[15] G. D. Birkhoff, Dynamical systems, Amer. Math. Soc. Colloq. Publ., 9, Amer. Math. Soc., Providence, RI, 1927, viii+295 pp. | MR | Zbl | Zbl

[16] V. Dragović, M. Radnović, “Integrable billiards and quadrics”, Russian Math. Surveys, 65:2 (2010), 319–379 | DOI | DOI | MR | Zbl

[17] V. V. Kozlov, Symmetries, topology and resonances in Hamiltonian mechanics, Ergeb. Math. Grenzgeb. 3. Folge / A Series of Modern Surveys in Mathematics, 31, Springer-Verlag, Berlin, 1996, xi+378 pp. | DOI | MR | MR | Zbl | Zbl

[18] J. Patera, R. T. Sharp, P. Winternitz, H. Zassenhaus, “Invariants of real low dimension Lie algebras”, J. Math. Phys., 17:6 (1976), 986–994 | DOI | MR | Zbl

[19] J. F. Cariñena, A. Ibort, G. Marmo, A. Perelomov, “On the geometry of Lie algebras and Poisson tensors”, J. Phys. A, 27:22 (1994), 7425–7449 | DOI | MR | Zbl

[20] V. V. Kozlov, “Rational integrals of quasi-homogeneous dynamical systems”, J. Appl. Math. Mech., 79:3 (2015), 209–216 | DOI

[21] V. V. Kozlov, “On rational integrals of geodesic flows”, Regul. Chaotic Dyn., 19:6 (2014), 601–606 | DOI | MR | Zbl

[22] L. A. Bunimovich, Ya. G. Sinai, “Statistical properties of Lorentz gas with periodic configuration of scatterers”, Comm. Math. Phys., 78:4 (1980/81), 479–497 | DOI | MR | Zbl

[23] N. Simányi, “Hard ball systems and semi-dispersive billiards: hyperbolicity and ergodicity”, Hard ball systems and the Lorentz gas, Encyclopaedia Math. Sci., 101, Springer, Berlin, 2000, 51–88 | DOI | MR | Zbl

[24] V. M. Babič, V. S. Buldyrev, Short-wavelength diffraction theory. Asymptotic methods, Springer Series on Wave Phenomena, 4, Springer-Verlag, Berlin, 1991, xi+445 pp. | MR | MR | Zbl | Zbl

[25] V. V. Kozlov, D. V. Treshchev, Billiards. A genetic introduction to the dynamics of systems with impacts, Transl. Math. Monogr., 89, Amer. Math. Soc., Providence, RI, 1991, viii+171 pp. | MR | MR | Zbl | Zbl

[26] A. A. Markeev, “The method of pointwise mappings in the stability problem of two-segment trajectories of the Birkhoff billiards”, Dynamical systems in classical mechanics, Amer. Math. Soc. Transl. Ser. 2, 168, Amer. Math. Soc., Providence, RI, 1995, 211–226 | MR | Zbl

[27] V. V. Kozlov, “Problem of stability of two-link trajectories in a multidimensional Birkhoff billiard”, Proc. Steklov Inst. Math., 273 (2011), 196–213 | DOI | MR | Zbl

[28] S. Tabachnikov, Geometry and billiards, Stud. Math. Libr., 30, Amer. Math. Soc., Providence, RI; Mathematics Advanced Study Semesters, University Park, PA, 2005, xii+176 pp. | DOI | MR | Zbl

[29] V. Dragović, M. Radnović, Poncelet porisms and beyond. Integrable billiards, hyperelliptic Jacobians and pencils of quadrics, Front. Math., Birkhäuser, Basel, 2011, vii+293 pp. | DOI | MR | Zbl

[30] V. I. Dragović, M. Radnović, “Pseudo-integrable billiards and double reflection nets”, Russian Math. Surveys, 70:1 (2015), 1–31 | DOI | DOI | MR | Zbl

[31] V. I. Arnol'd, “Small denominators and problems of stability of motion in classical and celestial mechanics”, Russian Math. Surveys, 18:6 (1963), 85–191 | DOI | MR | Zbl

[32] D. Burago, S. Ferleger, A. Kononenko, “A geometric approach to semi-dispersing billiards”, Hard ball systems and the Lorentz gas, Encyclopaedia Math. Sci., 101, Springer, Berlin, 2000, 9–27 | DOI | MR | Zbl

[33] V. V. Kozlov, “Topological obstructions to the integrability of natural mechanical systems”, Soviet Math. Dokl., 20 (1979), 1413–1415 | MR | Zbl

[34] S. V. Bolotin, “First integrals of systems with elastic reflections”, Mosc. Univ. Math. Bull., 43:6 (1988), 10–14 | MR | Zbl

[35] V. N. Kolokoltsov, “Geodesic flows on two-dimensional manifolds with an additional first integral that is polynomial in the velocities”, Math. USSR-Izv., 21:2 (1983), 291–306 | DOI | MR | Zbl

[36] I. A. Taimanov, “Topological obstructions to integrability of geodesic flows on non-simply-connected manifolds”, Math. USSR-Izv., 30:2 (1988), 403–409 | DOI | MR | Zbl

[37] I. A. Taimanov, “O topologicheskikh svoistvakh integriruemykh geodezicheskikh potokov”, Matem. zametki, 44:2 (1988), 283–284 | MR | Zbl

[38] G. Paternain, “Entropy and completely integrable Hamiltonian systems”, Proc. Amer. Math. Soc., 113:3 (1991), 871–873 | DOI | MR | Zbl

[39] G. P. Paternain, “On the topology of manifolds with completely integrable geodesic flows”, Ergodic Theory Dynam. Systems, 12:1 (1992), 109–121 | DOI | MR | Zbl

[40] S. V. Bolotin, P. H. Rabinowitz, “A variational construction of chaotic trajectories for a reversible Hamiltonian systems”, J. Differential Equations, 148:2 (1998), 364–387 | DOI | MR | Zbl

[41] S. L. Tabachnikov, “Dual billiards”, Russian Math. Surveys, 48:6 (1993), 81–109 | DOI | MR | Zbl

[42] A. Plakhov, Exterior billiards. Systems with impacts outside bounded domains, Springer, New York, 2012, xiv+284 pp. | DOI | MR | Zbl

[43] S. V. Bolotin, “Integrable billiards on surfaces of constant curvature”, Math. Notes, 51:2 (1992), 117–123 | DOI | MR | Zbl

[44] J. A. Thorpe, Elementary topics in differential geometry, Undergrad. Texts Math., Springer-Verlag, New York–Heidelberg, 1979, xiii+253 pp. | MR | MR | Zbl | Zbl

[45] H. Poincaré, “Réflections sur la théorie cinétique des gaz”, J. Phys. Théor. Appl. (4), 5 (1906), 369–403 | DOI | MR | Zbl | Zbl

[46] V. V. Kozlov, “Kinetics of collisionless continuous medium”, Regul. Chaotic Dyn., 6:3 (2001), 235–251 | DOI | MR | Zbl

[47] V. V. Kozlov, “Conservation laws of generalized billiards that are polynomial in momenta”, Russ. J. Math. Phys., 21:2 (2014), 226–241 | DOI | MR | Zbl

[48] V. V. Kozlov, D. V. Treshchev, “Weak convergence of solutions of the Liouville equation for nonlinear Hamiltonian systems”, Theoret. and Math. Phys., 134:3 (2003), 339–350 | DOI | DOI | MR | Zbl

[49] V. F. Lazutkin, Vypuklyi billiard i sobstvennye funktsii operatora Laplasa, Izd-vo LGU, L., 1981, 196 pp. | MR | Zbl

[50] S. V. Bolotin, “Nonintegrability of the $N$-center problem for $N>2$”, Mosc. Univ. Mech. Bull., 39:3 (1984), 24–28 | MR | Zbl

[51] L. Boltzmann, Vorlesungen über Gastheorie, v. 1, 2, J. A. Barth, Leipzig, 1896, 1898, vi+204 pp., x+265 pp. | Zbl

[52] E. Friedman, Erich's packing center, [15.02.2016] ,\par http://www2.stetson.edu/~efriedma/packing.html

[53] S. V. Bolotin, D. V. Treschev, “The anti-integrable limit”, Russian Math. Surveys, 70:6 (2015), 975–1030 | DOI | DOI | MR

[54] E. T. Wittaker, A treatise on the analytical dynamics of particles and rigid bodies. With an introduction to the problem of three bodies, 4th ed., Cambridge Univ. Press, Cambridge, 1937, xx+456 pp. | DOI | MR | Zbl | Zbl

[55] C. L. Siegel, “Über die algebraischen Integrale des restringierten Dreikörperproblems”, Trans. Amer. Math. Soc., 39:2 (1936), 225–233 | DOI | MR | Zbl

[56] B. Kruglikov, V. S. Matveev, The geodesic flow of a generic metric does not admit nontrivial integrals polynomial in momenta, 2015, 12 pp., arXiv: 1510.01493

[57] D. Treschev, “Billiard map and rigid rotation”, Phys. D, 255 (2013), 31–34 | DOI | MR | Zbl

[58] D. V. Treschev, “On a conjugacy problem in billiard dynamics”, Proc. Steklov Inst. Math., 289 (2015), 291–299 | DOI | DOI

[59] S. V. Bolotin, “Integrable Birkhoff billiards”, Mosc. Univ. Mech. Bull., 45:2 (1990), 10–13 | MR | Zbl

[60] M. Bialy, A. E. Mironov, Algebraic Birkhoff conjecture for billiards on sphere and hyperbolic plane, 2016, 10 pp., arXiv: 1602.05698

[61] M. Bialy, A. E. Mironov, Angular billiard and algebraic Birkhoff conjecture, 2016, 20 pp., arXiv: 1601.03196

[62] L. A. Bunimovich, “On the ergodic properties of nowhere dispersing billiards”, Comm. Math. Phys., 65:3 (1979), 295–312 | DOI | MR | Zbl