Homotopy theory in toric topology
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 71 (2016) no. 2, pp. 185-251 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In toric topology one associates with each simplicial complex $K$ on $m$ vertices two key spaces, the Davis–Januszkiewicz space $DJ_{K}$ and the moment-angle complex $\mathscr{Z}_{K}$, which are related by a homotopy fibration $\mathscr{Z}_{K}\xrightarrow{\widetilde{w}}DJ_K\to \prod_{i=1}^{m}\mathbb{C}P^{\infty}$. A great deal of work has been done to study the properties of $DJ_{K}$ and $\mathscr{Z}_{K}$, their generalizations to polyhedral products, and applications to algebra, combinatorics, and geometry. Chap. 1 surveys some of the main results in the homotopy theory of these spaces. Chap. 2 breaks new ground by initiating a study of the map $\widetilde{w}$. It is shown that, for a certain family of simplicial complexes $K$, the map $\widetilde{w}$ is a sum of higher and iterated Whitehead products. Bibliography: 49 titles.
Keywords: Davis–Januszkiewicz space, polyhedral product, higher Whitehead product, higher Samelson product.
Mots-clés : moment-angle complex, homotopy type
@article{RM_2016_71_2_a0,
     author = {J. Grbi\'c and S. Theriault},
     title = {Homotopy theory in toric topology},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {185--251},
     year = {2016},
     volume = {71},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2016_71_2_a0/}
}
TY  - JOUR
AU  - J. Grbić
AU  - S. Theriault
TI  - Homotopy theory in toric topology
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2016
SP  - 185
EP  - 251
VL  - 71
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/RM_2016_71_2_a0/
LA  - en
ID  - RM_2016_71_2_a0
ER  - 
%0 Journal Article
%A J. Grbić
%A S. Theriault
%T Homotopy theory in toric topology
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2016
%P 185-251
%V 71
%N 2
%U http://geodesic.mathdoc.fr/item/RM_2016_71_2_a0/
%G en
%F RM_2016_71_2_a0
J. Grbić; S. Theriault. Homotopy theory in toric topology. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 71 (2016) no. 2, pp. 185-251. http://geodesic.mathdoc.fr/item/RM_2016_71_2_a0/

[1] J. F. Adams, P. J. Hilton, “On the chain algebra of a loop space”, Comment. Math. Helv., 30 (1956), 305–330 | DOI | MR | Zbl

[2] C. Allday, “Rational Whitehead products and a spectral sequence of Quillen. II”, Houston J. Math., 3 (1977), 301–308 | MR | Zbl

[3] D. J. Anick, “Hopf algebras up to homotopy”, J. Amer. Math. Soc., 2:3 (1989), 417–453 | DOI | MR | Zbl

[4] A. Bahri, M. Bendersky, F. R. Cohen, S. Gitler, “The polyhedral product functor: a method of decomposition for moment-angle complexes, arrangements and related spaces”, Adv. Math., 225:3 (2010), 1634–1668 | DOI | MR | Zbl

[5] A. Bahri, M. Bendersky, F. R. Cohen, S. Gitler, “Cup-products for the polyhedral product functor”, Math. Proc. Cambridge Philos. Soc., 153:3 (2012), 457–469 | DOI | MR | Zbl

[6] A. Bahri, M. Bendersky, F. R. Cohen, S. Gitler, On the rational homotopy type of moment-angle complexes, 2012, 6 pp., arXiv: 1206.2173

[7] I. V. Baskakov, V. M. Bukhshtaber, T. E. Panov, “Cellular cochain algebras and torus actions”, Russian Math. Surveys, 59 (2004), 562–563 | DOI | DOI | MR | Zbl

[8] P. Beben, J. Grbić, Configuration spaces and polyhedral products, 2016 (v1 – 2014), 32 pp., arXiv: 1409.4462

[9] A. Berglund, M. Jöllenbeck, “On the Golod property of Stanley–Reisner rings”, J. Algebra, 315:1 (2007), 249–273 | DOI | MR | Zbl

[10] A. Björner, M. L. Wachs, “Shellable nonpure complexes and posets. I”, Trans. Amer. Math. Soc., 348:4 (1996), 1299–1327 | DOI | MR | Zbl

[11] A. Björner, M. Wachs, V. Welker, “On sequentially Cohen–Macaulay complexes and posets”, Israel J. Math., 169 (2009), 295–316 | DOI | MR | Zbl

[12] F. Bosio, L. Meersseman, “Real quadrics in $\mathbf{C}^{n}$, complex manifolds and convex polytopes”, Acta Math., 197:1 (2006), 53–127 | DOI | MR | Zbl

[13] P. Bubenik, “Separated Lie models and the homotopy Lie algebra”, J. Pure Appl. Algebra, 212:2 (2008), 401–410 | DOI | MR | Zbl

[14] V. M. Bukhshtaber, T. E. Panov, “Torus actions, combinatorial topology, and homological algebra”, Russian Math. Surveys, 55 (2000), 825–921 | DOI | DOI | MR | Zbl

[15] V. M. Buchstaber, T. E. Panov, “Torus actions and their applications in topology and combinatorics”, Univ. Lecture Ser., 24, Amer. Math. Soc., Providence, RI, 2002, viii+144 pp. | DOI | MR | Zbl

[16] F. R. Cohen, J. C. Moore, J. A. Neisendorfer, “Torsion in homotopy groups”, Ann. of Math. (2), 109:1 (1979), 121–168 | DOI | MR | Zbl

[17] S. Choi, M. Masuda, D. Y. Suh, “Rigidity problems in toric topology: a survey”, Klassicheskaya i sovremennaya matematika v pole deyatelnosti Borisa Nikolaevicha Delone, Sbornik statei. K 120-letiyu so dnya rozhdeniya chlena-korrespondenta AN SSSR Borisa Nikolaevicha Delone, Tr. MIAN, 275, MAIK, M., 2011, 188–201 | MR | Zbl

[18] M. W. Davis, T. Januszkiewicz, “Convex polytopes, Coxeter orbifolds and torus actions”, Duke Math. J., 62:2 (1991), 417–451 | DOI | MR | Zbl

[19] G. Denham, A. I. Suciu, “Moment-angle complexes, monomial ideals and Massey products”, Pure Appl. Math. Q., 3:1 (2007), 25–60 | DOI | MR | Zbl

[20] N. Dobrinskaya, Loops on polyhedral products and diagonal arrangements, 2009, 32 pp., arXiv: 0901.2871

[21] Y. Félix, D. Tanré, “Rational homotopy of the polyhedral product functor”, Proc. Amer. Math. Soc., 137:3 (2009), 891–898 | DOI | MR | Zbl

[22] M. Franz, “The integral cohomology of toric manifolds”, Geometricheskaya topologiya, diskretnaya geometriya i teoriya mnozhestv, Sbornik statei, Tr. MIAN, 252, Nauka, M., 2006, 61–70 | MR | Zbl

[23] T. Ganea, “A generalisation of the homology and homotopy suspension”, Comment. Math. Helv., 39 (1965), 295–322 | DOI | MR | Zbl

[24] S. Gitler, S. López de Medrano, “Intersections of quadrics, moment-angle manifolds and connected sums”, Geom. Topol., 17:3 (2013), 1497–1534 ; (2012 (v1 – 2009)), 45 pp., arXiv: 0901.2580 | DOI | MR | Zbl

[25] E. S. Golod, “On the homology of some local rings”, Soviet Math. Dokl., 3 (1962), 745–749 | MR | Zbl

[26] J. Grbić, T. Panov, S. Theriault, Jie Wu, “The homotopy types of moment-angle complexes for flag complexes”, Trans. Amer. Math. Soc., 368:9 (2016), 6663–6682 ; (2014 (v1 – 2012)), 20 pp., arXiv: 1211.0873 | DOI | MR | Zbl

[27] J. Grbić, S. Theriault, “Homotopy type of the complement of a coordinate subspace arrangement of codimension two”, Russian Math. Surveys, 59:6 (2004), 1207–1209 | DOI | DOI | MR | Zbl

[28] J. Grbić, S. Theriault, “The homotopy type of the complement of a coordinate subspace arrangement”, Topology, 46:4 (2007), 357–396 | DOI | MR | Zbl

[29] J. Grbić, S. Theriault, “The homotopy type of the polyhedral product for shifted complexes”, Adv. Math., 245 (2013), 690–715 | DOI | MR | Zbl

[30] V. Grujić, V. Welker, Discrete Morse theory for moment-angle complexes of pairs $(D^{n},S^{n-1})$, 2012, 19 pp., arXiv: 1212.2028

[31] J. Herzog, V. Reiner, V. Welker, “Componentwise linear ideals and Golod rings”, Michigan Math. J., 46:2 (1999), 211–223 | DOI | MR | Zbl

[32] K. Iriye, D. Kishimoto, “Decompositions of polyhedral products for shifted complexes”, Adv. Math., 245 (2013), 716–736 | DOI | MR | Zbl

[33] K. Iriye, D. Kishimoto, Topology of polyhedral products and the Golod property of Stanley–Reisner rings, 2013, 17 pp., arXiv: 1306.6221

[34] I. M. James, “Reduced product spaces”, Ann. of Math. (2), 62 (1955), 170–197 | DOI | MR | Zbl

[35] J.-M. Lemaire, Algèbres connexes et homologie des espaces de lacets, Lecture Notes in Math., 422, Springer-Verlag, Berlin–New York, 1974, xiv+134 pp. | DOI | MR | Zbl

[36] I. Yu. Limonchenko, “Stanley–Reisner rings of generalized truncation polytopes and their moment-angle manifolds”, Proc. Steklov Inst. Math., 286 (2014), 188–197 | DOI | DOI | Zbl

[37] I. Yu. Limonchenko, “Semeistva minimalno negolodovskikh kompleksov i poliedralnye proizvedeniya”, Dalnevost. matem. zhurn., 15:2 (2015), 222–237

[38] Z. Lü, T. Panov, “Moment-angle complexes from simplicial posets”, Cent. Eur. J. Math., 9:4 (2011), 715–730 | DOI | MR | Zbl

[39] D. McGavran, “Adjacent connected sums and torus actions”, Trans. Amer. Math. Soc., 251 (1979), 235–254 | DOI | MR | Zbl

[40] H. Maeda, M. Masuda, T. Panov, “Torus graphs and simplicial posets”, Adv. Math., 212:2 (2007), 458–483 | DOI | MR | Zbl

[41] J. W. Milnor, J. C. Moore, “On the structure of Hopf algebras”, Ann. of Math. (2), 81:2 (1965), 211–264 | DOI | MR | Zbl

[42] D. Notbohm, N. Ray, “On Davis–Januszkiewicz homotopy types. I. Formality and rationalisation”, Algebr. Geom. Topol., 5 (2005), 31–51 | DOI | MR | Zbl

[43] T. E. Panov, N. Ray, “Categorical aspects of toric topology”, Toric topology, Contemp. Math., 460, Amer. Math. Soc., Providence, RI, 2008, 293–322 | DOI | MR | Zbl

[44] G. J. Porter, “Higher order Whitehead products”, Topology, 3:2 (1965), 123–135 | DOI | MR | Zbl

[45] G. J. Porter, “The homotopy groups of wedges of suspensions”, Amer. J. Math., 88:3 (1966), 655–663 | DOI | MR | Zbl

[46] D. Quillen, “Rational homotopy theory”, Ann. of Math. (2), 90:2 (1969), 205–295 | DOI | MR | Zbl

[47] R. P. Stanley, “$f$-vectors and $h$-vectors of simplicial posets”, J. Pure Appl. Algebra, 71:2-3 (1991), 319–331 | DOI | MR | Zbl

[48] S. Theriault, “Moment-angle manifolds and Panov's problem”, Int. Math. Res. Not. IMRN, 2015:20 (2015), 10154–10175 | DOI | Zbl

[49] A. J. Trevisan, “Generalized Davis–Januszkiewicz spaces, multicomplexes and monomial rings”, Homology Homotopy Appl., 13:1 (2011), 205–221 | DOI | MR | Zbl