Homotopy theory in toric topology
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 71 (2016) no. 2, pp. 185-251

Voir la notice de l'article provenant de la source Math-Net.Ru

In toric topology one associates with each simplicial complex $K$ on $m$ vertices two key spaces, the Davis–Januszkiewicz space $DJ_{K}$ and the moment-angle complex $\mathscr{Z}_{K}$, which are related by a homotopy fibration $\mathscr{Z}_{K}\xrightarrow{\widetilde{w}}DJ_K\to \prod_{i=1}^{m}\mathbb{C}P^{\infty}$. A great deal of work has been done to study the properties of $DJ_{K}$ and $\mathscr{Z}_{K}$, their generalizations to polyhedral products, and applications to algebra, combinatorics, and geometry. Chap. 1 surveys some of the main results in the homotopy theory of these spaces. Chap. 2 breaks new ground by initiating a study of the map $\widetilde{w}$. It is shown that, for a certain family of simplicial complexes $K$, the map $\widetilde{w}$ is a sum of higher and iterated Whitehead products. Bibliography: 49 titles.
Keywords: Davis–Januszkiewicz space, polyhedral product, higher Whitehead product, higher Samelson product.
Mots-clés : moment-angle complex, homotopy type
@article{RM_2016_71_2_a0,
     author = {J. Grbi\'c and S. Theriault},
     title = {Homotopy theory in toric topology},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {185--251},
     publisher = {mathdoc},
     volume = {71},
     number = {2},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2016_71_2_a0/}
}
TY  - JOUR
AU  - J. Grbić
AU  - S. Theriault
TI  - Homotopy theory in toric topology
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2016
SP  - 185
EP  - 251
VL  - 71
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_2016_71_2_a0/
LA  - en
ID  - RM_2016_71_2_a0
ER  - 
%0 Journal Article
%A J. Grbić
%A S. Theriault
%T Homotopy theory in toric topology
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2016
%P 185-251
%V 71
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_2016_71_2_a0/
%G en
%F RM_2016_71_2_a0
J. Grbić; S. Theriault. Homotopy theory in toric topology. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 71 (2016) no. 2, pp. 185-251. http://geodesic.mathdoc.fr/item/RM_2016_71_2_a0/