@article{RM_2016_71_1_a6,
author = {A. Kudinov and I. Shapirovsky},
title = {Finite model property of modal logics of finite depth},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {164--166},
year = {2016},
volume = {71},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2016_71_1_a6/}
}
A. Kudinov; I. Shapirovsky. Finite model property of modal logics of finite depth. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 71 (2016) no. 1, pp. 164-166. http://geodesic.mathdoc.fr/item/RM_2016_71_1_a6/
[1] P. Blackburn, M. de Rijke, Y. Venema, Modal logic, Cambridge Univ. Press, Cambridge, 2001 | DOI | MR | Zbl
[2] A. Chagrov, M. Zakharyaschev, Modal logic, Oxford Univ. Press, New York, 1997 | MR | Zbl
[3] D. M. Gabbay, V. Shehtman, D. Skvortsov, Quantification in nonclassical logic, v. 1, Elsevier, Amsterdam, 2009 | Zbl
[4] R. Jansana, Notre Dame J. Formal Logic, 35:1 (1994), 88–98 | DOI | MR | Zbl
[5] Z. Kostrzycka, MLQ Math. Log. Q., 54:6 (2008), 617–624 | DOI | MR | Zbl
[6] A. Kudinov, I. Shapirovsky, “Finite model property of pretransitive analogs of S5”, Topology, algebra and categories in logic (Marseille, France, 2011), 2011, 261–264
[7] Y. Miyazaki, Advances in modal logic, v. 5, King's Coll. Publ., London, 2005, 171–190 | MR | Zbl
[8] F. Wolter, M. Zakharyaschev, Handbook of modal logic, Stud. Log. Pract. Reason., 3, Elsevier, Amsterdam, 2007, 427–489 | DOI | Zbl