Mots-clés : prequantization.
@article{RM_2016_71_1_a2,
author = {O. K. Sheinman},
title = {Lax operator algebras and integrable systems},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {109--156},
year = {2016},
volume = {71},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2016_71_1_a2/}
}
O. K. Sheinman. Lax operator algebras and integrable systems. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 71 (2016) no. 1, pp. 109-156. http://geodesic.mathdoc.fr/item/RM_2016_71_1_a2/
[1] V. I. Arnold, Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1974, 431 pp. ; V. I. Arnold, Mathematical methods of classical mechanics, Grad. Texts in Math., 60, Springer-Verlag, New York–Heidelberg, 1978, xvi+462 pp. | MR | Zbl | DOI | MR | Zbl
[2] A. Beilinson, V. Drinfeld, Quantization of Hitchin's integrable system and Hecke eigensheaves, Preprint, 1991, 384 pp. http://www.math.uchicago.edu/~mitya/langlands.html
[3] V. G. Drinfeld, V. V. Sokolov, “Algebry Li i uravneniya tipa Kortevega–de Friza”, Itogi nauki i tekhn. Ser. Sovrem. probl. matem. Nov. dostizh., 24, VINITI, M., 1984, 81–180 ; V. G. Drinfeld, V. V. Sokolov, “Lie algebras and equations of Korteweg–de Vries type”, J. Soviet Math., 30:2 (1985), 1975–2036 | MR | Zbl | DOI
[4] B. A. Dubrovin, I. M. Krichever, S. P. Novikov, “Integriruemye sistemy. I”, Dinamicheskie sistemy – 4, Itogi nauki i tekhn. Ser. Sovrem. probl. matem. Fundam. napravleniya, 4, VINITI, M., 1985, 179–284 ; B. A. Dubrovin, I. M. Krichever, S. P. Novikov, “Integrable systems. I”, Dynamical systems IV, Encyclopaedia Math. Sci., 4, Springer, Berlin, 1990, 173–280 | MR | Zbl | DOI | MR | Zbl
[5] B. Feigin, E. Frenkel, “Affine Kac–Moody algebras at the critical level and Gel'fand–Dikii algebras”, Infinite analysis, Part A, B (Kyoto, 1991), Adv. Ser. Math. Phys., 16, World Sci. Publ., River Edge, NJ, 1992, 197–215 | MR | Zbl
[6] G. Felder, Ch. Wieczerkowski, “Conformal blocks on elliptic curves and the Knizhnik–Zamolodchikov–Bernard equations”, Comm. Math. Phys., 176:1 (1996), 133–161 | DOI | MR | Zbl
[7] D. Friedan, S. Shenker, “The analitic geometry of two-dimensional conformal field theory”, Nuclear Phys. B, 281:3-4 (1987), 509–545 | DOI | MR
[8] W. M. Goldman, “Invariant functions on Lie groups and Hamiltonian flows of surface group representations”, Invent. Math., 85:2 (1986), 263–302 | DOI | MR | Zbl
[9] A. Gorsky, I. Krichever, A. Marshakov, A. Mironov, A. Morozov, Integrability and Seiberg–Witten exact solution, 1995, 12 pp., arXiv: hep-th/9505035
[10] N. Hitchin, “Stable bundles and integrable systems”, Duke Math. J., 54:1 (1987), 91–114 | DOI | MR | Zbl
[11] N. J. Hitchin, “Flat connections and geometric quantization”, Comm. Math. Phys., 131:2 (1990), 347–380 | DOI | MR | Zbl
[12] D. Ivanov, Knizhnik–Zamolodchikov–Bernard equations as a quantization of nonstationary Hitchin systems, 1996, 12 pp., arXiv: hep-th/9610207
[13] V. G. Kac, A. K. Raina, Bombay lectures on highest weight representations of infinite dimensional Lie algebras, Adv. Ser. Math. Phys., 2, World Sci. Publ., Teaneck, NJ, 1987, xii+145 pp. | MR | Zbl
[14] I. M. Krichever, “Metody algebraicheskoi geometrii v teorii nelineinykh uravnenii”, UMN, 32:6(198) (1977), 183–208 | MR | Zbl
[15] I. Krichever, “Vector bundles and Lax equations on algebraic curves”, Comm. Math. Phys., 229:2 (2002), 229–269 | DOI | MR | Zbl
[16] I. M. Krichever, S. P. Novikov, “Golomorfnye rassloeniya nad algebraicheskimi krivymi i nelineinye uravneniya”, UMN, 35:6(216) (1980), 47–68 | MR | Zbl
[17] I. M. Krichever, S. P. Novikov, “Algebry tipa Virasoro, rimanovy poverkhnosti i struktury teorii solitonov”, Funkts. analiz i ego pril., 21:2 (1987), 46–63 | MR | Zbl
[18] I. M. Krichever, S. P. Novikov, “Algebry tipa Virasoro, rimanovy poverkhnosti i struny v prostranstve Minkovskogo”, Funkts. analiz i ego pril., 21:4 (1987), 47–61 | MR | Zbl
[19] I. M. Krichever, S. P. Novikov, “Golomorfnye rassloeniya i kommutiruyuschie raznostnye operatory. Dvukhtochechnye konstruktsii”, UMN, 55:3(333) (2000), 181–182 | DOI | MR | Zbl
[20] I. M. Krichever, D. H. Phong, “Symplectic forms in the theory of solitons”, Integrable systems, Surv. Differ. Geom., 4, Int. Press, Boston, MA, 1998, 239–313 ; 1997, 76 pp., arXiv: hep-th/9708170 | DOI | MR | Zbl
[21] I. M. Krichever, O. K. Sheinman, “Algebry operatorov Laksa”, Funkts. analiz i ego pril., 41:4 (2007), 46–59 | DOI | MR | Zbl
[22] A. Levin, M. Olshanetsky, “Non-autonomous Hamiltonian systems related to highest Hitchin integrals”, Proceedings of the International seminar on integrable systems. Dedicated to the memory of M. V. Saveliev (Bonn, 1999), Max-Planck-Institute für Mathematik, Bonn, 1999
[23] A. Levin, M. Olshanetsky, A. Smirnov, A. Zotov, Characteristic classes and integrable systems for simple Lie groups, 2010, 51 pp., arXiv: 1007.4127v2
[24] S. P. Novikov, “Periodicheskaya zadacha dlya uravneniya Kortevega–de Friza. I”, Funkts. analiz i ego pril., 8:3 (1974), 54–66 | MR | Zbl
[25] M. A. Olshanetsky, “Generalized Hitchin systems and the Knizhnik–Zamolodchikov–Bernard equation on ellipic curves”, Lett. Math. Phys., 42:1 (1997), 59–71 | DOI | MR | Zbl
[26] M. A. Olshanetsky, A. M. Perelomov, “Completely integrable Hamiltonian systems connected with semisimple Lie algebras”, Invent. Math., 37:2 (1976), 93–108 | DOI | MR | Zbl
[27] M. A. Olshanetsky, A. M. Perelomov, “Classical integrable finite-dimensional systems related to Lie algebras”, Phys. Rep., 71:5 (1981), 313–400 | DOI | MR
[28] M. A. Olshanetskii, A. M. Perelomov, A. G. Reiman, M. A. Semenov-\allowbreakTyan-Shanskii, “Integriruemye sistemy. II”, Dinamicheskie sistemy – 7, Itogi nauki i tekhn. Ser. Sovrem. probl. matem. Fundam. napravleniya, 16, VINITI, M., 1987, 86–226 ; M. A. Ol'shanetskij, M. A. Perelomov, A. G. Reyman, M. A. Semenov-Tian-Shansky, “Integrable systems. II”, Dynamical systems VII, Encyclopaedia Math. Sci., 16, Springer-Verlag, Berlin, 1994, 83–259 | MR | Zbl | DOI | MR | Zbl
[29] A. M. Perelomov, Integriruemye sistemy klassicheskoi mekhaniki i algebry Li, Nauka, M., 1990, 240 pp. | Zbl
[30] A. G. Reiman, M. A. Semenov-Tyan-Shanskii, Integriruemye sistemy. Teoretiko-gruppovoi podkhod, In-t kompyuternykh issledovanii, M.–Izhevsk, 2003, 352 pp.
[31] M. Schlichenmaier, “Krichever–Novikov algebras for more than two points”, Lett. Math. Phys., 19:2 (1990), 151–165 | DOI | MR | Zbl
[32] M. Schlichenmaier, “Krichever–Novikov algebras for more than two points: explicit generators”, Lett. Math. Phys., 19:4 (1990), 327–336 | DOI | MR | Zbl
[33] M. Schlichenmaier, Krichever–Novikov type algebras. Theory and applications, de Gruyter Stud. Math., 53, de Gruyter, Berlin, 2014, xvi+360 pp. | DOI | MR | Zbl
[34] M. Shlikhenmaier, “Mnogotochechnye algebry operatorov Laksa. Pochti graduirovannaya struktura i tsentralnye rasshireniya”, Matem. sb., 205:5 (2014), 117–160 ; M. Schlichenmaier, “Multipoint Lax operator algebras: almost-graded structure and central extensions”, Sb. Math., 205:5 (2014), 722–762 ; (2013), 42 pp., arXiv: 1304.3902 | DOI | MR | Zbl | DOI
[35] M. Shlikhenmaier, O. K. Sheinman, “Teoriya Vessa–Zumino–Vittena–Novikova, uravneniya Knizhnika–Zamolodchikova i algebry Krichevera–Novikova”, UMN, 54:1(325) (1999), 213–250 | DOI | MR | Zbl
[36] M. Shlikhenmaier, O. K. Sheinman, “Uravneniya Knizhnika–Zamolodchikova dlya polozhitelnogo roda i algebry Krichevera–Novikova”, UMN, 59:4(358) (2004), 147–180 | DOI | MR | Zbl
[37] M. Shlikhenmaier, O. K. Sheinman, “Tsentralnye rasshireniya algebr operatorov Laksa”, UMN, 63:4(382) (2008), 131–172 ; M. Schlichenmaier, O. K. Sheinman, “Central extensions of Lax operator algebras”, Russian Math. Surveys, 63:4 (2008), 727–766 ; (2007), 43 СЃ., arXiv: 0711.4688 | DOI | MR | Zbl | DOI
[38] O. K. Sheinman, “Lax equations and the Knizhnik–Zamolodchikov connection”, Geometric methods in physics, Trends Math., Birkhäuser/Springer, Basel, 2013, 405–413 ; 2011 (v1 – 2010), 21 pp., arXiv: 1009.4706 | DOI | MR | Zbl
[39] O. K. Sheinman, Current algebras on Riemann surfaces. New results and applications, de Gruyter Exp. Math., 58, Walter de Gruyter GmbH Co. KG, Berlin, 2012, xiv+150 pp. | DOI | MR | Zbl
[40] O. K. Sheinman, “Algebry operatorov Laksa tipa $G_2$”, Dokl. RAN, 455:1 (2014), 23–25 ; O. K. Sheinman, “Lax operator algebras of type $G_2$”, Dokl. Math., 89:2 (2014), 151–153 ; (2013), 20 pp., arXiv: 1304.2510 | DOI | MR | Zbl | DOI
[41] O. K. Sheinman, “Lax operator algebras of type $G_2$”, Topology, geometry, integrable systems, and mathematical physics, Amer. Math. Soc. Transl. Ser. 2, 234, Amer. Math. Soc., Providence, RI, 2014, 373–392 | MR
[42] O. K. Sheinman, “Algebry operatorov Laksa i graduirovki na poluprostykh algebrakh Li”, Dokl. RAN, 461:2 (2015), 143–145 | DOI | Zbl
[43] O. K. Sheinman, “Lax operator algebras and gradings on semi-simple Lie algebras”, Transform. Groups, 21:1 (2016), 181–196 ; (2014), 18 pp., arXiv: 1406.5017 | DOI | MR
[44] O. K. Sheinman, “Ierarkhii konechnomernykh uravnenii Laksa so spektralnym parametrom na rimanovoi poverkhnosti, i poluprostye algebry Li”, TMF, 185:3 (2015), 527–544 | DOI | MR
[45] O. K. Sheinman, “Poluprostye algebry Li i gamiltonova teoriya konechnomernykh uravnenii Laksa so spektralnym parametrom na rimanovoi poverkhnosti”, Sovremennye problemy matematiki, mekhaniki i matematicheskoi fiziki, Sbornik statei, Tr. MIAN, 290, MAIK, M., 2015, 191–201 | DOI | Zbl
[46] O. K. Sheinman, “Global current algebras and localization on Riemann surfaces”, Mosc. Math. J., 15:4 (2015), 833–846
[47] A. N. Tyurin, “O klassifikatsii $n$-mernykh vektornykh rassloenii nad algebraicheskoi krivoi proizvolnogo roda”, Izv. AN SSSR. Ser. matem., 30:6 (1966), 1353–1366 ; A. N. Tyurin, “On the classification of $n$-dimensional vector-bundles over an algebraic curve of arbitrary genus”, Amer. Math. Soc. Transl. Ser. 2, 73, Amer. Math. Soc., Providence, RI, 1968, 196–211 | MR | Zbl
[48] A. N. Tyurin, “Klassifikatsiya vektornykh rassloenii nad algebraicheskoi krivoi proizvolnogo roda”, Izv. AN SSSR. Ser. matem., 29:3 (1965), 657–688 ; A. N. Tyurin, “Classification of vector bundles over an algebraic curve of arbitrary genus”, Amer. Math. Soc. Transl. Ser. 2, 63, Amer. Math. Soc., Providence, RI, 1967, 245–279 | MR | Zbl
[49] E. B. Vinberg, V. V. Gorbatsevich, A. L. Onischik, “Stroenie grupp i algebr Li”, Gruppy Li i algebry Li – 3, Itogi nauki i tekhn. Ser. Sovrem. probl. matem. Fundam. napravleniya, 41, VINITI, M., 1990, 5–253 ; A. L. Onishchik, E. B. Vinberg, V. V. Gorbatsevich, Lie groups and Lie algebras III. Structure of Lie groups and Lie algebras, Encyclopaedia Math. Sci., 41, Springer-Verlag, Berlin, 1994, iv+248 pp. | MR | Zbl | MR | Zbl
[50] V. E. Zakharov, S. V. Manakov, S. P. Novikov, L. P. Pitaevskii, Teoriya solitonov. Metod obratnoi zadachi, Nauka, M., 1980, 320 pp. ; S. Novikov, S. V. Manakov, L. P. Pitaevskii, V. E. Zakharov, Theory of solitons. The inverse scattering method, Contemp. Soviet Math., Consultants Bureau [Plenum], New York, 1984, xi+276 pp. | MR | Zbl | MR | Zbl
[51] V. E. Zakharov, A. V. Mikhailov, “Metod obratnoi zadachi rasseyaniya so spektralnym parametrom na algebraicheskoi krivoi”, Funkts. analiz i ego pril., 17:4 (1983), 1–6 | MR | Zbl