Lax operator algebras and integrable systems
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 71 (2016) no. 1, pp. 109-156 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A new class of infinite-dimensional Lie algebras, called Lax operator algebras, is presented, along with a related unifying approach to finite-dimensional integrable systems with a spectral parameter on a Riemann surface such as the Calogero–Moser and Hitchin systems. In particular, the approach includes (non-twisted) Kac–Moody algebras and integrable systems with a rational spectral parameter. The presentation is based on quite simple ideas about the use of gradings of semisimple Lie algebras and their interaction with the Riemann–Roch theorem. The basic properties of Lax operator algebras and the basic facts about the theory of the integrable systems in question are treated (and proved) from this general point of view. In particular, the existence of commutative hierarchies and their Hamiltonian properties are considered. The paper concludes with an application of Lax operator algebras to prequantization of finite-dimensional integrable systems. Bibliography: 51 titles.
Keywords: gradings of semisimple Lie algebras, Lax operator algebras, integrable systems, spectral parameter on a Riemann surface, Tyurin parameters, Hamiltonian theory
Mots-clés : prequantization.
@article{RM_2016_71_1_a2,
     author = {O. K. Sheinman},
     title = {Lax operator algebras and integrable systems},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {109--156},
     year = {2016},
     volume = {71},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2016_71_1_a2/}
}
TY  - JOUR
AU  - O. K. Sheinman
TI  - Lax operator algebras and integrable systems
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2016
SP  - 109
EP  - 156
VL  - 71
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/RM_2016_71_1_a2/
LA  - en
ID  - RM_2016_71_1_a2
ER  - 
%0 Journal Article
%A O. K. Sheinman
%T Lax operator algebras and integrable systems
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2016
%P 109-156
%V 71
%N 1
%U http://geodesic.mathdoc.fr/item/RM_2016_71_1_a2/
%G en
%F RM_2016_71_1_a2
O. K. Sheinman. Lax operator algebras and integrable systems. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 71 (2016) no. 1, pp. 109-156. http://geodesic.mathdoc.fr/item/RM_2016_71_1_a2/

[1] V. I. Arnold, Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1974, 431 pp. ; V. I. Arnold, Mathematical methods of classical mechanics, Grad. Texts in Math., 60, Springer-Verlag, New York–Heidelberg, 1978, xvi+462 pp. | MR | Zbl | DOI | MR | Zbl

[2] A. Beilinson, V. Drinfeld, Quantization of Hitchin's integrable system and Hecke eigensheaves, Preprint, 1991, 384 pp. http://www.math.uchicago.edu/~mitya/langlands.html

[3] V. G. Drinfeld, V. V. Sokolov, “Algebry Li i uravneniya tipa Kortevega–de Friza”, Itogi nauki i tekhn. Ser. Sovrem. probl. matem. Nov. dostizh., 24, VINITI, M., 1984, 81–180 ; V. G. Drinfeld, V. V. Sokolov, “Lie algebras and equations of Korteweg–de Vries type”, J. Soviet Math., 30:2 (1985), 1975–2036 | MR | Zbl | DOI

[4] B. A. Dubrovin, I. M. Krichever, S. P. Novikov, “Integriruemye sistemy. I”, Dinamicheskie sistemy – 4, Itogi nauki i tekhn. Ser. Sovrem. probl. matem. Fundam. napravleniya, 4, VINITI, M., 1985, 179–284 ; B. A. Dubrovin, I. M. Krichever, S. P. Novikov, “Integrable systems. I”, Dynamical systems IV, Encyclopaedia Math. Sci., 4, Springer, Berlin, 1990, 173–280 | MR | Zbl | DOI | MR | Zbl

[5] B. Feigin, E. Frenkel, “Affine Kac–Moody algebras at the critical level and Gel'fand–Dikii algebras”, Infinite analysis, Part A, B (Kyoto, 1991), Adv. Ser. Math. Phys., 16, World Sci. Publ., River Edge, NJ, 1992, 197–215 | MR | Zbl

[6] G. Felder, Ch. Wieczerkowski, “Conformal blocks on elliptic curves and the Knizhnik–Zamolodchikov–Bernard equations”, Comm. Math. Phys., 176:1 (1996), 133–161 | DOI | MR | Zbl

[7] D. Friedan, S. Shenker, “The analitic geometry of two-dimensional conformal field theory”, Nuclear Phys. B, 281:3-4 (1987), 509–545 | DOI | MR

[8] W. M. Goldman, “Invariant functions on Lie groups and Hamiltonian flows of surface group representations”, Invent. Math., 85:2 (1986), 263–302 | DOI | MR | Zbl

[9] A. Gorsky, I. Krichever, A. Marshakov, A. Mironov, A. Morozov, Integrability and Seiberg–Witten exact solution, 1995, 12 pp., arXiv: hep-th/9505035

[10] N. Hitchin, “Stable bundles and integrable systems”, Duke Math. J., 54:1 (1987), 91–114 | DOI | MR | Zbl

[11] N. J. Hitchin, “Flat connections and geometric quantization”, Comm. Math. Phys., 131:2 (1990), 347–380 | DOI | MR | Zbl

[12] D. Ivanov, Knizhnik–Zamolodchikov–Bernard equations as a quantization of nonstationary Hitchin systems, 1996, 12 pp., arXiv: hep-th/9610207

[13] V. G. Kac, A. K. Raina, Bombay lectures on highest weight representations of infinite dimensional Lie algebras, Adv. Ser. Math. Phys., 2, World Sci. Publ., Teaneck, NJ, 1987, xii+145 pp. | MR | Zbl

[14] I. M. Krichever, “Metody algebraicheskoi geometrii v teorii nelineinykh uravnenii”, UMN, 32:6(198) (1977), 183–208 | MR | Zbl

[15] I. Krichever, “Vector bundles and Lax equations on algebraic curves”, Comm. Math. Phys., 229:2 (2002), 229–269 | DOI | MR | Zbl

[16] I. M. Krichever, S. P. Novikov, “Golomorfnye rassloeniya nad algebraicheskimi krivymi i nelineinye uravneniya”, UMN, 35:6(216) (1980), 47–68 | MR | Zbl

[17] I. M. Krichever, S. P. Novikov, “Algebry tipa Virasoro, rimanovy poverkhnosti i struktury teorii solitonov”, Funkts. analiz i ego pril., 21:2 (1987), 46–63 | MR | Zbl

[18] I. M. Krichever, S. P. Novikov, “Algebry tipa Virasoro, rimanovy poverkhnosti i struny v prostranstve Minkovskogo”, Funkts. analiz i ego pril., 21:4 (1987), 47–61 | MR | Zbl

[19] I. M. Krichever, S. P. Novikov, “Golomorfnye rassloeniya i kommutiruyuschie raznostnye operatory. Dvukhtochechnye konstruktsii”, UMN, 55:3(333) (2000), 181–182 | DOI | MR | Zbl

[20] I. M. Krichever, D. H. Phong, “Symplectic forms in the theory of solitons”, Integrable systems, Surv. Differ. Geom., 4, Int. Press, Boston, MA, 1998, 239–313 ; 1997, 76 pp., arXiv: hep-th/9708170 | DOI | MR | Zbl

[21] I. M. Krichever, O. K. Sheinman, “Algebry operatorov Laksa”, Funkts. analiz i ego pril., 41:4 (2007), 46–59 | DOI | MR | Zbl

[22] A. Levin, M. Olshanetsky, “Non-autonomous Hamiltonian systems related to highest Hitchin integrals”, Proceedings of the International seminar on integrable systems. Dedicated to the memory of M. V. Saveliev (Bonn, 1999), Max-Planck-Institute für Mathematik, Bonn, 1999

[23] A. Levin, M. Olshanetsky, A. Smirnov, A. Zotov, Characteristic classes and integrable systems for simple Lie groups, 2010, 51 pp., arXiv: 1007.4127v2

[24] S. P. Novikov, “Periodicheskaya zadacha dlya uravneniya Kortevega–de Friza. I”, Funkts. analiz i ego pril., 8:3 (1974), 54–66 | MR | Zbl

[25] M. A. Olshanetsky, “Generalized Hitchin systems and the Knizhnik–Zamolodchikov–Bernard equation on ellipic curves”, Lett. Math. Phys., 42:1 (1997), 59–71 | DOI | MR | Zbl

[26] M. A. Olshanetsky, A. M. Perelomov, “Completely integrable Hamiltonian systems connected with semisimple Lie algebras”, Invent. Math., 37:2 (1976), 93–108 | DOI | MR | Zbl

[27] M. A. Olshanetsky, A. M. Perelomov, “Classical integrable finite-dimensional systems related to Lie algebras”, Phys. Rep., 71:5 (1981), 313–400 | DOI | MR

[28] M. A. Olshanetskii, A. M. Perelomov, A. G. Reiman, M. A. Semenov-\allowbreakTyan-Shanskii, “Integriruemye sistemy. II”, Dinamicheskie sistemy – 7, Itogi nauki i tekhn. Ser. Sovrem. probl. matem. Fundam. napravleniya, 16, VINITI, M., 1987, 86–226 ; M. A. Ol'shanetskij, M. A. Perelomov, A. G. Reyman, M. A. Semenov-Tian-Shansky, “Integrable systems. II”, Dynamical systems VII, Encyclopaedia Math. Sci., 16, Springer-Verlag, Berlin, 1994, 83–259 | MR | Zbl | DOI | MR | Zbl

[29] A. M. Perelomov, Integriruemye sistemy klassicheskoi mekhaniki i algebry Li, Nauka, M., 1990, 240 pp. | Zbl

[30] A. G. Reiman, M. A. Semenov-Tyan-Shanskii, Integriruemye sistemy. Teoretiko-gruppovoi podkhod, In-t kompyuternykh issledovanii, M.–Izhevsk, 2003, 352 pp.

[31] M. Schlichenmaier, “Krichever–Novikov algebras for more than two points”, Lett. Math. Phys., 19:2 (1990), 151–165 | DOI | MR | Zbl

[32] M. Schlichenmaier, “Krichever–Novikov algebras for more than two points: explicit generators”, Lett. Math. Phys., 19:4 (1990), 327–336 | DOI | MR | Zbl

[33] M. Schlichenmaier, Krichever–Novikov type algebras. Theory and applications, de Gruyter Stud. Math., 53, de Gruyter, Berlin, 2014, xvi+360 pp. | DOI | MR | Zbl

[34] M. Shlikhenmaier, “Mnogotochechnye algebry operatorov Laksa. Pochti graduirovannaya struktura i tsentralnye rasshireniya”, Matem. sb., 205:5 (2014), 117–160 ; M. Schlichenmaier, “Multipoint Lax operator algebras: almost-graded structure and central extensions”, Sb. Math., 205:5 (2014), 722–762 ; (2013), 42 pp., arXiv: 1304.3902 | DOI | MR | Zbl | DOI

[35] M. Shlikhenmaier, O. K. Sheinman, “Teoriya Vessa–Zumino–Vittena–Novikova, uravneniya Knizhnika–Zamolodchikova i algebry Krichevera–Novikova”, UMN, 54:1(325) (1999), 213–250 | DOI | MR | Zbl

[36] M. Shlikhenmaier, O. K. Sheinman, “Uravneniya Knizhnika–Zamolodchikova dlya polozhitelnogo roda i algebry Krichevera–Novikova”, UMN, 59:4(358) (2004), 147–180 | DOI | MR | Zbl

[37] M. Shlikhenmaier, O. K. Sheinman, “Tsentralnye rasshireniya algebr operatorov Laksa”, UMN, 63:4(382) (2008), 131–172 ; M. Schlichenmaier, O. K. Sheinman, “Central extensions of Lax operator algebras”, Russian Math. Surveys, 63:4 (2008), 727–766 ; (2007), 43 СЃ., arXiv: 0711.4688 | DOI | MR | Zbl | DOI

[38] O. K. Sheinman, “Lax equations and the Knizhnik–Zamolodchikov connection”, Geometric methods in physics, Trends Math., Birkhäuser/Springer, Basel, 2013, 405–413 ; 2011 (v1 – 2010), 21 pp., arXiv: 1009.4706 | DOI | MR | Zbl

[39] O. K. Sheinman, Current algebras on Riemann surfaces. New results and applications, de Gruyter Exp. Math., 58, Walter de Gruyter GmbH Co. KG, Berlin, 2012, xiv+150 pp. | DOI | MR | Zbl

[40] O. K. Sheinman, “Algebry operatorov Laksa tipa $G_2$”, Dokl. RAN, 455:1 (2014), 23–25 ; O. K. Sheinman, “Lax operator algebras of type $G_2$”, Dokl. Math., 89:2 (2014), 151–153 ; (2013), 20 pp., arXiv: 1304.2510 | DOI | MR | Zbl | DOI

[41] O. K. Sheinman, “Lax operator algebras of type $G_2$”, Topology, geometry, integrable systems, and mathematical physics, Amer. Math. Soc. Transl. Ser. 2, 234, Amer. Math. Soc., Providence, RI, 2014, 373–392 | MR

[42] O. K. Sheinman, “Algebry operatorov Laksa i graduirovki na poluprostykh algebrakh Li”, Dokl. RAN, 461:2 (2015), 143–145 | DOI | Zbl

[43] O. K. Sheinman, “Lax operator algebras and gradings on semi-simple Lie algebras”, Transform. Groups, 21:1 (2016), 181–196 ; (2014), 18 pp., arXiv: 1406.5017 | DOI | MR

[44] O. K. Sheinman, “Ierarkhii konechnomernykh uravnenii Laksa so spektralnym parametrom na rimanovoi poverkhnosti, i poluprostye algebry Li”, TMF, 185:3 (2015), 527–544 | DOI | MR

[45] O. K. Sheinman, “Poluprostye algebry Li i gamiltonova teoriya konechnomernykh uravnenii Laksa so spektralnym parametrom na rimanovoi poverkhnosti”, Sovremennye problemy matematiki, mekhaniki i matematicheskoi fiziki, Sbornik statei, Tr. MIAN, 290, MAIK, M., 2015, 191–201 | DOI | Zbl

[46] O. K. Sheinman, “Global current algebras and localization on Riemann surfaces”, Mosc. Math. J., 15:4 (2015), 833–846

[47] A. N. Tyurin, “O klassifikatsii $n$-mernykh vektornykh rassloenii nad algebraicheskoi krivoi proizvolnogo roda”, Izv. AN SSSR. Ser. matem., 30:6 (1966), 1353–1366 ; A. N. Tyurin, “On the classification of $n$-dimensional vector-bundles over an algebraic curve of arbitrary genus”, Amer. Math. Soc. Transl. Ser. 2, 73, Amer. Math. Soc., Providence, RI, 1968, 196–211 | MR | Zbl

[48] A. N. Tyurin, “Klassifikatsiya vektornykh rassloenii nad algebraicheskoi krivoi proizvolnogo roda”, Izv. AN SSSR. Ser. matem., 29:3 (1965), 657–688 ; A. N. Tyurin, “Classification of vector bundles over an algebraic curve of arbitrary genus”, Amer. Math. Soc. Transl. Ser. 2, 63, Amer. Math. Soc., Providence, RI, 1967, 245–279 | MR | Zbl

[49] E. B. Vinberg, V. V. Gorbatsevich, A. L. Onischik, “Stroenie grupp i algebr Li”, Gruppy Li i algebry Li – 3, Itogi nauki i tekhn. Ser. Sovrem. probl. matem. Fundam. napravleniya, 41, VINITI, M., 1990, 5–253 ; A. L. Onishchik, E. B. Vinberg, V. V. Gorbatsevich, Lie groups and Lie algebras III. Structure of Lie groups and Lie algebras, Encyclopaedia Math. Sci., 41, Springer-Verlag, Berlin, 1994, iv+248 pp. | MR | Zbl | MR | Zbl

[50] V. E. Zakharov, S. V. Manakov, S. P. Novikov, L. P. Pitaevskii, Teoriya solitonov. Metod obratnoi zadachi, Nauka, M., 1980, 320 pp. ; S. Novikov, S. V. Manakov, L. P. Pitaevskii, V. E. Zakharov, Theory of solitons. The inverse scattering method, Contemp. Soviet Math., Consultants Bureau [Plenum], New York, 1984, xi+276 pp. | MR | Zbl | MR | Zbl

[51] V. E. Zakharov, A. V. Mikhailov, “Metod obratnoi zadachi rasseyaniya so spektralnym parametrom na algebraicheskoi krivoi”, Funkts. analiz i ego pril., 17:4 (1983), 1–6 | MR | Zbl