Connectedness and solarity in problems of best and near-best approximation
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 71 (2016) no. 1, pp. 1-77 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This survey is concerned with structural characteristics of ‘suns’ in normed linear spaces, with special emphasis on connectedness and monotone path-connectedness. Consideration is given to both direct theorems in geometric approximation theory in which approximative properties of sets are derived from their structural characteristics, and converse theorems in which structural properties of sets are derived from their approximative characteristics. Geometric methods of approximation theory are employed in solving the eikonal equation. Bibliography: 231 titles.
Keywords: sun, strict sun, Chebyshev set, near-best approximation, connectedness, infinite connectedness, monotone path-connectedness
Mots-clés : eikonal equation.
@article{RM_2016_71_1_a0,
     author = {A. R. Alimov and I. G. Tsar'kov},
     title = {Connectedness and solarity in problems of best and near-best approximation},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {1--77},
     year = {2016},
     volume = {71},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2016_71_1_a0/}
}
TY  - JOUR
AU  - A. R. Alimov
AU  - I. G. Tsar'kov
TI  - Connectedness and solarity in problems of best and near-best approximation
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2016
SP  - 1
EP  - 77
VL  - 71
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/RM_2016_71_1_a0/
LA  - en
ID  - RM_2016_71_1_a0
ER  - 
%0 Journal Article
%A A. R. Alimov
%A I. G. Tsar'kov
%T Connectedness and solarity in problems of best and near-best approximation
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2016
%P 1-77
%V 71
%N 1
%U http://geodesic.mathdoc.fr/item/RM_2016_71_1_a0/
%G en
%F RM_2016_71_1_a0
A. R. Alimov; I. G. Tsar'kov. Connectedness and solarity in problems of best and near-best approximation. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 71 (2016) no. 1, pp. 1-77. http://geodesic.mathdoc.fr/item/RM_2016_71_1_a0/

[1] A. A. Agrachev, J. P. A. Gauthier, “Sub-Riemannian metrics and isoperimetric problems in the contact case”, J. Math. Sci. (N. Y.), 103:6 (2001), 639–663 | DOI | MR | Zbl

[2] A. Aizpuru, F. J. Garcia-Pacheco, “Some questions about rotundity and renormings in Banach spaces”, J. Aust. Math. Soc., 79:1 (2005), 131–140 | DOI | MR | Zbl

[3] A. R. Alimov, “A number of connected components of sun's complement”, Proceedings of the XIX workshop on function theory (Beloretsk, 1994), East J. Approx., 1:4 (1995), 419–429 | MR | Zbl

[4] A. R. Alimov, “Chebyshev set's complement”, Proceedings of the XX workshop on function theory (Moscow, 1995), East J. Approx., 2:2 (1996), 215–232 | MR | Zbl

[5] A. R. Alimov, “Chebyshev compact sets in the plane”, Proc. Steklov Inst. Math., 219 (1997), 2–19 | MR | Zbl

[6] A. R. Alimov, “Vsyakoe li chebyshevskoe mnozhestvo vypuklo?”, Matem. prosv., ser. 3, 2, MTsNMO, M., 1998, 155–172

[7] A. R. Alimov, “The number of connected components of Chebishev sets and ‘suns’ complement”, Proc. A. Razmadze Math. Inst., 117 (1998), 135–136

[8] A. R. Alimov, “On the structure of the complements of Chebyshev sets”, Funct. Anal. Appl., 35:3 (2001), 176–182 | DOI | DOI | MR | Zbl

[9] A. R. Alimov, “Geometrical characterization of strict suns in $\ell^\infty(n)$”, Math. Notes, 70:1 (2001), 3–10 | DOI | DOI | MR | Zbl

[10] A. R. Alimov, “Characterisations of Chebyshev sets in $c_0$”, J. Approx. Theory, 129:2 (2004), 217–229 | DOI | MR | Zbl

[11] A. R. Alimov, “Connectedness of suns in the space $c_0$”, Izv. Math., 69:4 (2005), 651–666 | DOI | DOI | MR | Zbl

[12] A. R. Alimov, “The geometric structure of Chebyshev sets in $\ell^\infty(n)$”, Funct. Anal. Appl., 39:1 (2005), 1–8 | DOI | DOI | MR | Zbl

[13] A. R. Alimov, “Convexity of Chebyshev sets contained in a subspace”, Math. Notes, 78:1 (2005), 3–13 | DOI | DOI | MR | Zbl

[14] A. R. Alimov, “Preservation of approximative properties of subsets of Chebyshev sets and suns in $\ell^\infty (n)$”, Izv. Math., 70:5 (2006), 857–866 | DOI | DOI | MR | Zbl

[15] A. R. Alimov, “Monotone path-connectedness of Chebyshev sets in the space $C(Q)$”, Sb. Math., 197:9 (2006), 1259–1272 | DOI | DOI | MR | Zbl

[16] A. R. Alimov, “Preservation of approximative properties of Chebyshev sets and suns in a plane”, Moscow Univ. Math. Bull., 63:5 (2008), 198–201 | DOI | Zbl

[17] A. R. Alimov, “A monotone path connected Chebyshev set is a sun”, Math. Notes, 91:2 (2012), 290–292 | DOI | DOI | MR | Zbl

[18] A. R. Alimov, “Bounded strict solar property of strict suns in the space $C(Q)$”, Moscow Univ. Math. Bull., 68:1 (2013), 14–17 | DOI | MR | Zbl

[19] A. R. Alimov, “Local solarity of suns in normed linear spaces”, J. Math. Sci. (N. Y.), 197:4 (2014), 447–454 | DOI | MR | Zbl

[20] A. R. Alimov, “Monotone path-connectedness and solarity of Menger-connected sets in Banach spaces”, Izv. Math., 78:4 (2014), 641–655 | DOI | DOI | MR | Zbl

[21] A. R. Alimov, “On finite-dimensional Banach spaces in which suns are connected”, Eurasian Math. J. (to appear)

[22] A. R. Alimov, H. Berens, “Examples of Chebyshev sets in matrix spaces”, J. Approx. Theory, 99:1 (1999), 44–53 | DOI | MR | Zbl

[23] A. R. Alimov, M. I. Karlov, “Sets with external Chebyshev layer”, Math. Notes, 69:2 (2001), 269–273 | DOI | DOI | MR | Zbl

[24] A. R. Alimov, V. Yu. Protasov, “Separation of convex sets by extreme hyperplanes”, J. Math. Sci. (N. Y.), 191:5 (2013), 599–604 | DOI | MR | Zbl

[25] A. R. Alimov, I. G. Tsarkov, “Svyaznost i drugie geometricheskie svoistva solnts i chebyshevskikh mnozhestv”, Fundament. i prikl. matem., 19:4 (2014), 21–91

[26] D. Amir, F. Deutsch, “Suns, moons, and quasi-polyhedra”, J. Approx. Theory, 6:2 (1972), 176–201 | DOI | MR | Zbl

[27] J. Andres, G. Gabor, L. Górniewicz, “Acyclicity of solution sets to functional inclusions”, Nonlinear Anal., 49:5 (2002), 671–688 | DOI | MR | Zbl

[28] V. I. Arnol'd, Singularities of caustics and wave fronts, Math. Appl. (Soviet Ser.), 62, Kluwer Academic Publishers Group, Dordrecht, 1990, xiv+259 pp. | DOI | MR | MR | Zbl | Zbl

[29] V. S. Balaganskii, “An antiproximal set in a strictly convex space with Fréchet differentiable norm”, Proceedings of the XX workshop on function theory (Moscow, 1995), East J. Approx., 2:2 (1996), 169–176 | MR | Zbl

[30] V. S. Balaganskii, “On the connectedness of the set of points of discontinuity of the metric projection”, East J. Approx., 2:3 (1996), 263–279 | MR | Zbl

[31] V. S. Balaganskii, “On convex closed bounded bodies without farthest points such that the closure of their complement is antiproximinal”, Proc. Steklov Inst. Math. (Suppl.), 277:suppl. 1 (2012), 48–54 | DOI | Zbl

[32] V. S. Balaganskii, L. P. Vlasov, “The problem of convexity of Chebyshev sets”, Russian Math. Surveys, 51:6 (1996), 1127–1190 | DOI | DOI | MR | Zbl

[33] M. V. Balashov, G. E. Ivanov, “Weakly convex and proximally smooth sets in Banach spaces”, Izv. Math., 73:3 (2009), 455–499 | DOI | DOI | MR | Zbl

[34] M. V. Balashov, D. Repovš, “Uniform convexity and the splitting problem for selections”, J. Math. Anal. Appl., 360:1 (2009), 307–316 | DOI | MR | Zbl

[35] H. H. Bauschke, Xianfu Wang, Jane Ye, Xiaoming Yuan, “Bregman distances and Chebyshev sets”, J. Approx. Theory, 159:1 (2009), 3–25 | DOI | MR | Zbl

[36] B. B. Bednov, P. A. Borodin, “Banach spaces that realize minimal fillings”, Sb. Math., 205:4 (2014), 459–475 | DOI | DOI | MR | Zbl

[37] V. I. Berdyshev, “K voprosu o chebyshevskikh mnozhestvakh”, Dokl. AN AzSSR, 22:9 (1966), 3–5 | MR | Zbl

[38] V. I. Berdyshev, “On the modulus of continuity of an operator of best approximation”, Math. Notes, 15:5 (1974), 478–484 | DOI | MR | Zbl

[39] V. I. Berdyshev, “Spaces with a uniformly continuous metric projection”, Math. Notes, 17:1 (1975), 3–8 | DOI | MR | Zbl

[40] V. I. Berdyshev, “Continuity of a multivalued mapping connected with the problem of minimizing a functional”, Math. USSR-Izv., 16:3 (1981), 431–456 | DOI | MR | Zbl

[41] V. I. Berdyshev, “Variation of the norms in the problem of best approximation”, Math. Notes, 29:2 (1981), 95–103 | DOI | MR | Zbl

[42] V. I. Berdyshev, L. V. Petrak, Approksimatsiya funktsii, szhatie chislennoi informatsii, prilozheniya, UrO RAN, Ekaterinburg, 1999, 297 pp. | MR | Zbl

[43] H. Berens, L. Hetzelt, “Suns and contractive retracts in the plane”, Teoriya priblizhenii funktsii (Kiev, 31 maya–5 iyunya, 1983), Nauka, M., 1987, 483–487

[44] H. Berens, L. Hetzelt, “Die metrische Struktur der Sonnen in $\ell_\infty(n)$”, Aequationes Math., 27:3 (1984), 274–287 | DOI | MR | Zbl

[45] H. Berens, L. Hetzelt, “On accretive operators on $\ell^\infty_n$”, Pacific J. Math., 125:2 (1986), 301–315 | DOI | MR | Zbl

[46] F. Bernard, L. Thibault, “Prox-regularity of functions and sets in Banach spaces”, Set-Valued Anal., 12:1-2 (2004), 25–47 | DOI | MR | Zbl

[47] J. Blatter, P. D. Morris, D. E. Wulbert, “Continuity of the set-valued metric projection”, Math. Ann., 178:1 (1968), 12–24 | DOI | MR | Zbl

[48] Principles of optics: electromagnetic theory of propagation, interference and diffraction of light, eds. M. Born, E. Wolf, Pergamon Press, London–New York–Paris–Los Angeles, 1959, xxvi+803 pp. | MR | Zbl

[49] P. A. Borodin, “An example of a bounded approximately compact set that is not compact”, Russian Math. Surveys, 49:4 (1994), 153–154 | DOI | MR | Zbl

[50] P. A. Borodin, “Convexity of 2-Chebyshev sets in Hilbert space”, Moscow Univ. Math. Bull., 63:3 (2008), 96–98 | DOI | MR | Zbl

[51] P. A. Borodin, “Approximation by simple partial fractions on the semi-axis”, Sb. Math., 200:8 (2009), 1127–1148 | DOI | DOI | MR | Zbl

[52] P. A. Borodin, “On the convexity of $N$-Chebyshev sets”, Izv. Math., 75:5 (2011), 889–914 | DOI | DOI | MR | Zbl

[53] P. A. Borodin, “Approximation by simple partial fractions with constraints on the poles”, Sb. Math., 203:11 (2012), 1553–1570 | DOI | DOI | MR | Zbl

[54] P. A. Borodin, “Examples of sets with given approximation properties in $WCG$-space”, Math. Notes, 94:5 (2013), 605–608 | DOI | DOI | MR | Zbl

[55] J. M. Borwein, J. D. Vanderwerff, Convex functions: constructions, characterizations and counterexamples, Encyclopedia Math. Appl., 109, Cambridge Univ. Press, Cambridge, 2010, x+521 pp. | DOI | MR | Zbl

[56] D. Braess, Nonlinear approximation theory, Springer Ser. Comput. Math., 7, Springer-Verlag, Berlin, 1986, xiv+290 pp. | DOI | MR | Zbl

[57] D. Braess, “Geometrical characterizations for nonlinear uniform approximation”, J. Approx. Theory, 11:3 (1974), 260–274 | DOI | MR | Zbl

[58] W. W. Breckner, “Zur Charakterisierung von Minimallösungen”, Mathematica (Cluj), 12(35) (1970), 25–38 | MR | Zbl

[59] W. W. Breckner, B. Brosowski, “Ein Kriterium zur Charakterisierung von Sonnen”, Mathematica (Cluj), 13(36) (1971), 181–188 | MR | Zbl

[60] B. E. Breckner, A. Horváth, C. Varga, “A multiplicity result for a special class of gradient-type systems with non-differentiable term”, Nonlinear Anal., 70:2 (2009), 606–620 | DOI | MR | Zbl

[61] A. Brøndsted, “Convex sets and Chebyshev sets”, Math. Scand., 17 (1965), 5–16 | MR | Zbl

[62] A. Brøndsted, “Convex sets and Chebyshev sets. II”, Math. Scand., 18 (1966), 5–15 | MR | Zbl

[63] B. Brosowski, Nicht-lineare Tschebyscheff-Approximation, B. I. Hochschulskripten, 808/808a, Bibliographisches Institut, Mannheim, 1968, iii+153 pp. | MR | Zbl

[64] B. Brosowski, “Nichtlineare Approximation in normierten Vektorräumen”, Abstract spaces and approximation (Oberwolfach, 1968), Internat. Schriftenreihe Numer. Math., 10, Birkhäuser, Basel, 1969, 140–159 | DOI | MR | Zbl

[65] B. Brosowski, “Einige Bemerkungen zum verallgemeinerten Kolmogoroffschen Kriterium”, Funktionalanalytische Methoden der numerischen Mathematik (Oberwolfach, 1967), Internat. Schriftenreihe Numer. Math., 12, Birkhäuser, Basel, 1969, 25–34 | DOI | Zbl

[66] B. Brosowski, F. Deutsch, “Some new continuity concepts for metric projections”, Bull. Amer. Math. Soc., 78:6 (1972), 974–978 | DOI | MR | Zbl

[67] B. Brosowski, F. Deutsch, J. Lambert, P. D. Morris, “Chebyshev sets which are not suns”, Math. Ann., 212:2 (1974), 89–101 | DOI | MR | Zbl

[68] B. Brosowski, F. Deutsch, “Radial continuity of set-valued metric projection”, J. Approx. Theory, 11:3 (1974), 236–253 | DOI | MR | Zbl

[69] B. Brosowski, F. Deutsch, “On some geometric properties of suns”, J. Approx. Theory, 10:3 (1974), 245–267 | DOI | MR | Zbl

[70] B. Brosowski, R. Wegmann, “Charakterisierung bester Approximationen in normierten Vektorräumen”, J. Approx. Theory, 3:4 (1970), 369–397 | DOI | MR | Zbl

[71] A. L. Brown, “Chebyshev sets and facial systems of convex sets in finite-dimensional spaces”, Proc. London Math. Soc. (3), 41:2 (1980), 297–339 | DOI | MR | Zbl

[72] A. L. Brown, “Chebyshev sets and the shapes of convex bodies”, Methods of functional analysis in approximation theory (Bombay, 1985), Internat. Schriftenreihe Numer. Math., 76, Birkhäuser, Basel, 1986, 97–121 | MR | Zbl

[73] A. L. Brown, “Suns in normed linear spaces which are finite dimensional”, Math. Ann., 279:1 (1987), 87–101 | DOI | MR | Zbl

[74] A. L. Brown, “On the connectedness properties of suns in finite dimensional spaces”, Functional analysis and optimization (Canberra, 1988), Proc. Centre Math. Anal. Austral. Nat. Univ., 20, Austral. Nat. Univ., Canberra, 1988, 1–15 | MR | Zbl

[75] A. L. Brown, “On the problem of characterising suns in finite dimensional spaces”, Proceedings of the Fourth International Conference on Functional Analysis and Approximation Theory (Potenza, 2000), v. I, Rend. Circ. Mat. Palermo (2) Suppl., 68, part I, Circ. Mat. Palermo, Palermo, 2002, 315–328 | MR | Zbl

[76] A. L. Brown, “Suns in polyhedral spaces”, Seminar of mathematical analysis (Malaga/Seville, 2002/2003), Colecc. Abierta, 64, Univ. Sevilla Secr. Publ., Seville, 2003, 139–146 | MR | Zbl

[77] J. W. Bruce, P. J. Giblin, Curves and singularities. A geometrical introduction to singularity theory, Cambridge Univ. Press, Cambridge, 1984, xii+222 pp. | MR | MR | Zbl | Zbl

[78] L. N. H. Bunt, Bijdrage tot de theorie der convexe puntverzamelingen, Proefschrifft Groningen, Noord-Hollandsche Uitgevers Maatschappij, Amsterdam, 1934, 108 pp. | Zbl

[79] P. Butzer, F. Jongmans, “P. L. Chebyshev (1821–1894). A guide to his life and work”, J. Approx. Theory, 96:1 (1999), 111–138 | DOI | MR | Zbl

[80] S. Carl, S. Heikkilä, Fixed point theory in ordered sets and applications. From differential and integral equations to game theory, Springer, New York, 2011, xiv+477 pp. | DOI | MR | Zbl

[81] E. W. Cheney, Introduction to approximation theory, McGraw-Hill Book Co., New York–Toronto–London, 1966, xii+259 pp. | MR | Zbl

[82] K. V. Chesnokova, “The linearity coefficient of metric projections onto one-dimensional Chebyshev subspaces of the space $C$”, Math. Notes, 96:4 (2014), 556–562 | DOI | DOI | MR | Zbl

[83] L. Chong, G. A. Watson, “Characterization of a best and a unique best approximation from constrained rationals”, Comput. Math. Appl., 30:3-6 (1995), 51–57 | DOI | MR | Zbl

[84] S. Cobzaş, “Geometric properties of Banach spaces and the existence of nearest and farthest points”, Abstr. Appl. Anal., 2005:3 (2005), 259–285 | DOI | MR | Zbl

[85] Ş. Cobzaş, Functional analysis in asymmetric normed spaces, Front. Math., Birkhäuser/Springer Basel AG, Basel, 2013, x+219 pp. | DOI | MR | Zbl

[86] E. N. Dancer, B. Sims, “Weak star separability”, Bull. Austral. Math. Soc., 20:2 (1979), 253–257 | DOI | MR | Zbl

[87] F. Deutsch, Best approximation in inner product spaces, CMS Books Math./Ouvrages Math. SMC, 7, Springer-Verlag, New York, 2001, xvi+338 pp. | DOI | MR | Zbl

[88] F. Deutsch, J. M. Lambert, “On continuity of metric projections”, J. Approx. Theory, 29:2 (1980), 116–131 | DOI | MR | Zbl

[89] C. Dierieck, “Characterization for best nonlinear approximations: a geometrical interpretation”, J. Approx. Theory, 14:3 (1975), 163–187 | DOI | MR | Zbl

[90] R. Dragoni, J. W. Macki, P. Nistri, P. Zecca, Solution sets of differential equations in abstract spaces, Pitman Research Notes in Mathematics Series, 342, Harlow, Longman, 1996, xii+100 pp. | MR | Zbl

[91] Ch. B. Dunham, “Rational Chebyshev approximation on subsets”, J. Approx. Theory, 1:4 (1968), 484–487 | DOI | MR | Zbl

[92] Ch. B. Dunham, “Characterizability and uniqueness in real Chebyshev approximation”, J. Approx. Theory, 2:4 (1969), 374–383 | DOI | MR | Zbl

[93] Ch. B. Dunham, “Chebyshev sets in $C[0,1]$ which are not suns”, Canad. Math. Bull., 18:1 (1975), 35–37 | DOI | MR | Zbl

[94] Ch. B. Dunham, “Transformed rational Chebyshev approximation”, J. Approx. Theory, 19:3 (1977), 200–204 | DOI | MR | Zbl

[95] K. Eda, U. H. Karimov, D. Repovš, “On (co)homology locally connected spaces”, Topology Appl., 120:3 (2002), 397–401 | DOI | MR | Zbl

[96] N. V. Efimov, S. B. Stechkin, “Nekotorye svoistva chebyshevskikh mnozhestv”, Dokl. AN SSSR, 118:1 (1958), 17–19 | MR | Zbl

[97] N. V. Efimov, S. B. Stechkin, “Approximate compactness and Chebyshev sets”, Soviet Math. Dokl., 2 (1961), 1226–1228 | MR | Zbl

[98] F. Faraci, A. Iannizzotto, “An extension of a multiplicity theorem by Ricceri with an application to a class of quasilinear equations”, Studia Math., 172:3 (2006), 275–287 | DOI | MR | Zbl

[99] F. Faraci, A. Iannizzotto, “Well posed optimization problems and nonconvex Chebyshev sets in Hilbert spaces”, SIAM J. Optim., 19:1 (2008), 211–216 | DOI | MR | Zbl

[100] H. Federer, “Curvature measures”, Trans. Amer. Math. Soc., 93:3 (1959), 418–491 | DOI | MR | Zbl

[101] R. P. Feynman, R. B. Leighton, M. Sands, The Feynman lectures on physics, v. I, Mainly mechanics, radiation, and heat, Reading, Mass.–London, 1963, 52 chapt. | Zbl

[102] J. Fletcher, The Chebyshev set problem, Master of Science thesis, The Univ. of Auckland, 2013, iv+83 pp.

[103] J. Fletcher, W. B. Moors, “Chebyshev sets”, J. Aust. Math. Soc., 98:2 (2015), 161–231 | DOI | MR | Zbl

[104] C. Franchetti, E. W. Cheney, “The embedding of proximinal sets”, J. Approx. Theory, 48:2 (1986), 213–225 | DOI | MR | Zbl

[105] C. Franchetti, S. Roversi, Suns, $M$-connected sets and $P$-acyclic sets in Banach spaces, Preprint No 50139, Inst. di Mat. Appl. “G. Sansone”, Firenze, 1988, 29 pp.

[106] A. V. Fursikov, “Properties of solutions of some extremal problems connected with the Navier–Stokes system”, Math. USSR-Sb., 46:3 (1983), 323–351 | DOI | MR | Zbl

[107] A. V. Fursikov, “Nekotorye voprosy teorii optimalnogo upravleniya nelineinymi sistemami s raspredelennymi parametrami”, Tr. sem. im. I. G. Petrovskogo, 1983, no. 9, 167–189 | MR | Zbl

[108] A. V. Fursikov, Optimal control of distributed systems. Theory and applications, Transl. Math. Monogr., 187, Amer. Math. Soc., Providence, RI, 2000, xiv+305 pp. | MR | Zbl | Zbl

[109] A. L. Garkavi, “On existence of best approximation of a function of two variables by sums of plane waves”, Proc. Steklov Inst. Math., 219 (1997), 123–129 | MR | Zbl

[110] J. R. Giles, “The Mazur intersection problem”, J. Convex Anal., 13:3-4 (2006), 739–750 | MR | Zbl

[111] V. L. Goncharov, “Teoriya nailuchshego priblizheniya funktsii”, Nauchnoe nasledie P. L. Chebysheva, Izd-vo AN SSSR, M.–L., 1945, 122–172

[112] V. L. Goncharov, “The theory of best approximation of functions”, J. Approx. Theory, 106 (2000), 2–57 | DOI | MR | Zbl

[113] L. Górniewicz, “Topological structure of solution sets: current results”, CDDE 2000 Proceedings (Brno), Arch. Math. (Brno), 36, suppl. (2000), 343–382 | MR | Zbl

[114] L. Górniewicz, Topological fixed point theory of multivalued mappings, Topol. Fixed Point Theory Appl., 4, 2nd ed., Springer, Dordrecht, 2006, xiv+539 pp. | DOI | MR | Zbl

[115] A. S. Granero, M. Jiménez-Sevilla, J. P. Moreno, “Intersections of closed balls and geometry of Banach spaces”, Extracta Math., 19:1 (2004), 55–92 | MR | Zbl

[116] A. S. Granero, J. P. Moreno, R. R. Phelps, “Mazur sets in normed spaces”, Discrete Comput Geom., 31:3 (2004), 411–420 | DOI | MR | Zbl

[117] P. M. Gruber, “Planar Chebyshev sets”, Mathematical structure–computational mathematics–mathematical modelling, v. 2, Publ. House Bulgar. Acad. Sci., Sofia, 1984, 184–191 | MR | Zbl

[118] A. A. Gusak, “Predystoriya i nachalo razvitiya teorii priblizheniya funktsii”, Istor.-matem. issled., 14, GIFML, M., 1961, 289–348 | Zbl

[119] A. A. Gusak, Teoriya priblizheniya funktsii, BGU, Minsk, 1972, 208 pp. | Zbl

[120] K. P. Hart, J. Nagata, J. E. Vaughan (eds.), Encyclopedia of general topology, Elsevier, Amsterdam, 2004, x+526 pp. | MR | Zbl

[121] J.-P. Hiriart-Urruty, “Potpourri of conjectures and open questions in nonlinear analysis and optimization”, SIAM Rev., 49:2 (2007), 255–273 | DOI | MR | Zbl

[122] S. T. Hu, Theory of retracts, Wayne State Univ. Press, Detroit, 1965, 234 pp. | MR | Zbl

[123] S. Hu, N. S. Papageorgiou, Handbook of multivalued analysis, v. II, Math. Appl. (N. Y.), 500, Applications, Kluwer Acad. Publ., Dordrecht, 2000, xii+926 pp. | DOI | MR | Zbl

[124] G. E. Ivanov, “On well posed best approximation problems for a nonsymmetric seminorm”, J. Convex Anal., 20:2 (2013), 501–529 | MR | Zbl

[125] G. E. Ivanov, M. S. Lopushanski, “Approksimativnye svoistva slabo vypuklykh mnozhestv v prostranstvakh s nesimmetrichnoi polunormoi”, Tr. MFTI, 4:4 (2012), 94–104

[126] V. K. Ivanov, V. V. Vasin, V. P. Tanana, Theory of linear ill-posed problems and its applications, Inverse Ill-posed Probl. Ser., 36, 2nd ed., VSP, Utrecht, 2002, xiii+281 pp. | DOI | MR | MR | Zbl | Zbl

[127] M. Jiang, “On Johnson's example of a nonconvex Chebyshev set”, J. Approx. Theory, 74:2 (1993), 152–158 | DOI | MR | Zbl

[128] M. Jiménez Sevilla, J. P. Moreno, “A note on norm attaining functionals”, Proc. Amer. Math. Soc., 126:7 (1998), 1989–1997 | DOI | MR | Zbl

[129] G. G. Johnson, “Closure in a Hilbert space of a prehilbert space Chebyshev set”, Topology Appl., 153:2-3 (2005), 239–244 | DOI | MR | Zbl

[130] A. Jourani, L. Thibault, D. Zagrodny, “Differential properties of the Moreau envelope”, J. Funct. Anal., 266:3 (2014), 1185–1237 | DOI | MR | Zbl

[131] M. I. Karlov, “Chebyshevskie mnozhestva na mnogoobraziyakh”, Tr. IMM UrO RAN, 4, 1996, 157–161 | MR | Zbl

[132] M. I. Karlov, I. G. Tsarkov, “Vypuklost i svyaznost chebyshevskikh mnozhestv i solnts”, Fundament. i prikl. matem., 3:4 (1997), 967–978 | MR | Zbl

[133] S. Ya. Khavinson, “Approksimativnye svoistva nekotorykh mnozhestv v prostranstvakh nepreryvnykh funktsii”, Anal. Math., 29:2 (2003), 87–105 | DOI | MR

[134] V. L. Klee, Jr., “A characterization of convex sets”, Amer. Math. Monthly, 56:4 (1949), 247–249 | DOI | MR | Zbl

[135] V. Klee, “Dispersed Chebyshev sets and coverings by balls”, Math. Ann., 257:2 (1981), 251–260 | DOI | MR | Zbl

[136] V. Klee, “Do infinite-dimensional Banach spaces admit nice tilings?”, Studia Sci. Math. Hungar., 21:3-4 (1986), 415–427 | MR | Zbl

[137] H. König, “A general minimax theorem based on connectedness”, Arch. Math. (Basel), 59:1 (1992), 55–64 | DOI | MR | Zbl

[138] S. V. Konyagin, “Connectedness of sets in best approximation problems”, Soviet Math. Dokl., 24 (1981), 460–463 | MR | Zbl

[139] S. V. Konyagin, “Sets of points of nonemptiness and continuity of the metric projection”, Math. Notes, 33:5 (1983), 331–338 | DOI | MR | Zbl

[140] S. V. Konyagin, “O nepreryvnosti operatora obobschennogo ratsionalnogo priblizheniya”, Matem. zametki, 44:3 (1988), 404 | MR | Zbl

[141] S. V. Konyagin, “Ob approksimativnykh svoistvakh proizvolnykh zamknutykh mnozhestv v banakhovykh prostranstvakh”, Fundament. i prikl. matem., 3:4 (1997), 979–989 | MR | Zbl

[142] S. V. Konyagin, I. G. Tsar'kov, Moscow Univ. Math. Bull., 41:5 (1986), Efimov–Stechkin spaces | MR | Zbl

[143] V. A. Koshcheev, “The connectivity and approximative properties of sets in linear normed spaces”, Math. Notes, 17:2 (1975), 114–119 | DOI | MR | Zbl

[144] B. A. Koščeev, “Connectedness and solar properties of sets in normed linear spaces”, Math. Notes, 19:2 (1976), 158–164 | DOI | MR | Zbl

[145] V. A. Koshcheev, “Some properties of the $\delta$-projection in linear normed spaces”, Soviet Math. (Iz. VUZ), 20:5 (1976), 26–30 | MR | Zbl

[146] V. A. Koshcheev, “An example of a disconnected sun in a Banach space”, Math. Notes, 26:1 (1979), 535–537 | DOI | MR | Zbl

[147] V. A. Koshcheev, “On the structure of suns in Banach spaces”, Approximation and function spaces (Gdańsk, 1979), North–Holland, Amsterdam–New York, 1981, 371–376 | MR | Zbl

[148] V. A. Koshcheev, “Vlasov–Wulbert connectedness of sets in Hilbert space”, Math. Notes, 80:5 (2006), 744–747 | DOI | DOI | MR | Zbl

[149] Yu. A. Kravtsov, Yu. I. Orlov, Geometricheskaya optika neodnorodnykh sred, Nauka, M., 1980, 304 pp. | MR

[150] S. N. Kruzhkov, “Generalized solutions of the Hamilton–Jacobi equations of eikonal type. I. Formulation of the problems; existence, uniqueness and stability theorems; some properties of the solutions”, Math. USSR-Sb., 27:3 (1975), 406–446 | DOI | MR | Zbl

[151] W. Kryszewski, “On the existence of equilibria and fixed points of maps under constraints”, Handbook of topological fixed point theory, Springer, Dordrecht, 2005, 783–866 | DOI | MR | Zbl

[152] P. D. Lebedev, A. A. Uspenskii, V. N. Ushakov, “Construction of a minimax solution for an eikonal-type equation”, Proc. Steklov Inst. Math. (Suppl.), 263:suppl. 2 (2008), S191–S201 | DOI | MR | Zbl

[153] E. D. Livshits, “Stability of the operator of $\varepsilon$-projection to the set of splines in $C[0,1]$”, Izv. Math., 67:1 (2003), 91–119 | DOI | DOI | MR | Zbl

[154] E. D. Livshits, “On almost-best approximation by piecewise polynomial functions in the space $C[0,1]$”, Math. Notes, 78:4 (2005), 586–591 | DOI | DOI | MR | Zbl

[155] E. D. Livshits, “Continuous selections of operators of almost best approximation by splines in the space $L_p[0,1]$. I”, Russ. J. Math. Phys., 12:2 (2005), 215–218 | MR | Zbl

[156] H. Maehly, Ch. Witzgall, “Tschebyscheff-Approximationen in kleinen Intervallen. II. Stetigkeitssätze für gebrochen rationale Approximationen”, Numer. Math., 2 (1960), 293–307 | DOI | MR

[157] Yu. V. Malykhin, “Convexity condition in Cucker–Smale theorems in the theory of teaching”, Math. Notes, 84:1 (2008), 142–146 | DOI | DOI | MR | Zbl

[158] H. Mann, “Untersuchungen über Wabenzellen bei allgemeiner Minkowskischer Metrik”, Monatsh. Math. Phys., 42 (1935), 417–424 | DOI | Zbl

[159] A. V. Marinov, “Nepreryvnost i svyaznost metricheskoi $\delta$-proektsii”, Approksimatsiya v konkretnykh i abstraktnykh banakhovykh prostranstvakh, Sbornik statei, UNTs AN SSSR, Sverdlovsk, 1987, 82–95 | MR | Zbl

[160] A. V. Marinov, “Stability estimates of continuous selections for metric almost-projections”, Math. Notes, 55:4 (1994), 367–371 | DOI | MR | Zbl

[161] A. V. Marinov, “The Lipschitz constants of the metric $\varepsilon$-projection operator in spaces with given modules of convexity and smoothness”, Izv. Math., 62:2 (1998), 313–318 | DOI | DOI | MR | Zbl

[162] W. S. Massey, Homology and cohomology theory. An approach based on Alexander-Spanier cochains, Monogr. Textbooks Pure Appl. Math., 46, Marcel Dekker, Inc., New York–Basel, 1978, xiv+412 pp. | MR | MR | Zbl | Zbl

[163] R. E. Megginson, An introduction to Banach space theory, Grad. Texts in Math., 183, Springer-Verlag, New York, 1998, xx+596 pp. | DOI | MR | Zbl

[164] G. Meinardus, D. Schwedt, “Nicht-lineare Approximationen”, Arch. Ration. Mech. Anal., 17:4 (1964), 297–326 | DOI | MR | Zbl

[165] S. A. Melikhov, “Steenrod homotopy”, Russian Math. Surveys, 64:3 (2009), 469–551 | DOI | DOI | MR | Zbl

[166] K. Menger, “Untersuchungen über allgemeine Metrik”, Math. Ann., 100:1 (1928), 75–163 | DOI | MR | Zbl

[167] J. P. Moreno, R. Schneider, “Continuity properties of the ball hull mapping”, Nonlinear Anal., 66:4 (2007), 914–925 | DOI | MR | Zbl

[168] T. Motzkin, “Sur quelques propriétés caractéristiques des ensembles convexes”, Atti Accad. Naz. Lincei Rend. (6), 21 (1935), 562–567 | Zbl

[169] N. V. Nevesenko, “Strict sums and semicontinuity below metric projections in linear normed spaces”, Math. Notes, 23:4 (1978), 308–312 | DOI | MR | Zbl

[170] N. V. Nevesenko, “Metric projection and connectedness of sets in linear normed spaces”, Soviet Math. (Iz. VUZ), 23:1 (1979), 40–42 | MR | Zbl

[171] G. Nürnberger, “Strongly unique spline approximation with free knots”, Constr. Approx., 3:1 (1987), 31–42 | DOI | MR | Zbl

[172] G. Nürnberger, Approximation by spline functions, Springer-Verlag, Berlin, 1989, xii+243 pp. | MR | Zbl

[173] E. V. Oshman, “Chebyshevskie mnozhestva i nepreryvnost metricheskoi proektsii”, Izv. vuzov. Matem., 1970, no. 9, 78–82 | MR | Zbl

[174] S. Papadopoulou, “A connected separable metric space with a dispersed Chebyshev set”, J. Approx. Theory, 39:4 (1983), 320–323 | DOI | MR | Zbl

[175] Chr. Pauc, “Sur la rélation entre un point et une de ses projections sur un ensemble”, Revue Sci. (Rev. Rose Illus.), 77 (1939), 657–658 | MR | Zbl

[176] R. R. Phelps, “A representation theorem for bounded convex sets”, Proc. Amer. Math. Soc., 11:6 (1960), 976–983 | DOI | MR | Zbl

[177] R. A. Poliquin, R. T. Rockafellar, “Prox-regular functions in variational analysis”, Trans. Amer. Math. Soc., 348:5 (1996), 1805–1838 | DOI | MR | Zbl

[178] W. Pollul, Topologien auf Mengen von Teilmengen und Stetigkeit von mengenwertigen metrischen Projektionen, Diplomarbeit, Bonn, 1967

[179] E. S. Polovinkin, M. V. Balashov, Elementy vypuklogo i silno vypuklogo analiza, Fizmatlit, M., 2004, 416 pp. | Zbl

[180] T. Poston, I. Stewart, Catastrophe theory and its applications, Surveys and Reference Works in Mathematics, 2, Pitman, London–San Francisco, CA–Melbourne, 1978, xviii+491 pp. | MR | MR | Zbl | Zbl

[181] D. Repovš, P. V. Semenov, “Continuous selections of multivalued mappings”, Recent progress in general topology. III, Atlantis Press, Paris, 2014, 711–749 | DOI | MR | Zbl

[182] B. Ricceri, “A general multiplicity theorem for certain nonlinear equations in Hilbert spaces”, Proc. Amer. Math. Soc., 133:11 (2005), 3255–3261 | DOI | MR | Zbl

[183] B. Ricceri, “Recent advances in minimax theory and applications”, Pareto optimality, game theory and equilibria, Springer Optim. Appl., 17, Springer, New York, 2008, 23–52 | DOI | MR | Zbl

[184] B. Ricceri, “A conjecture implying the existence of non-convex Chebyshev sets in infinite-dimensional Hilbert spaces”, Matematiche (Catania), 65:2 (2010), 193–199 | MR | Zbl

[185] K. S. Ryutin, “Lipshitsevost retraktsii i operator obobschennogo ratsionalnogo priblizheniya”, Fundament. i prikl. matem., 6:4 (2000), 1205–1220 | MR | Zbl

[186] K. S. Ryutin, Approksimativnye svoistva obobschennykh ratsionalnykh funktsii, Diss. ... kand. fiz.-matem. nauk, MGU, M., 2002, 92 pp.

[187] C. S. Ryutin, “On uniformly continuous almost best generalized rational approximation operators”, Math. Notes, 87:1 (2010), 141–145 | DOI | DOI | MR | Zbl

[188] E. Schmidt, “Stetigkeitsaussagen bei der Tschebyscheff-Approximation mit Exponentialsummen”, Math. Z., 113:2 (1970), 159–170 | DOI | MR | Zbl

[189] P. Schwartz, “Two theorems on suns in continuous function spaces”, Approximation theory (Univ. Texas, Austin, TX, 1973), Academic Press, New York, 1973, 477–480 | MR | Zbl

[190] P. Shvartsman, “Lipschitz selections of set-valued mappings and Helly's theorem”, J. Geom. Anal., 12:2 (2002), 289–324 | DOI | MR | Zbl

[191] L. L. Schumaker, Spline functions: basic theory, Cambridge Math. Lib., 3rd ed., Cambridge Univ. Press, Cambridge, 2007, xvi+582 pp. | DOI | MR | Zbl

[192] I. Singer, “Some remarks on approximative compactness”, Rev. Roumaine Math. Pures Appl., 9 (1964), 167–177 | MR | Zbl

[193] I. Singer, Best approximation in normed linear spaces by elements of linear subspaces, Grundlehren Math. Wiss., 171, Publishing House of the Academy of the Socialist Republic of Romania, Bucharest; Springer-Verlag, New York–Berlin, 1970, 415 pp. | MR | Zbl

[194] I. Singer, The theory of best approximation and functional analysis, CBMS–NSF Regional Conf. Ser. in Appl. Math., 13, SIAM Society for Industrial and Applied Mathematics, Philadelphia, PA, 1974, vii+95 pp. | MR | Zbl

[195] V. N. Solov'ev, “The subdifferential and the directional derivatives of the maximum of a family of convex functions”, Izv. Math., 62:4 (1998), 807–832 | DOI | DOI | MR | Zbl

[196] M. Sommer, “Charakterisierung von Minimallösungen in normierten Vektorräumen durch Eigenschaften von Hyperebenen”, 14, no. 2, J. Approximation Theory, 1975, 103–114 | DOI | MR | Zbl

[197] E. N. Sosov, “On the continuity and connectedness of metric $\delta$-projection in a uniformly convex geodesic space”, Russian Math. (Iz. VUZ), 45:3 (2001), 52–56 | MR | Zbl

[198] K.-G. Steffens, The history of approximation theory. From Euler to Bernstein, Birkhäuser Boston, Inc., Boston, MA, 2006, xx+219 pp. | MR | Zbl

[199] A. I. Subbotin, “Minimax solutions to the Hamilton–Jacobi equations”, J. Math. Sci. (N. Y.), 103:6 (2001), 772–777 | DOI | MR | Zbl

[200] V. M. Tikhomirov, “Approximation theory”, Analysis II. Convex analysis and approximation theory, Encyclopaedia Math. Sci., 14, Springer-Verlag, Berlin, 1990, 93–243 | DOI | MR | MR | Zbl | Zbl

[201] S. L. Troyanski, “Primer gladkogo prostranstva, sopryazhennoe k kotoromu ne yavlyaetsya strogo normirovannym”, Studia Math., 35 (1970), 305–309 | MR | Zbl

[202] I. G. Tsar'kov, “Bounded Chebyshev sets in finite-dimensional Banach spaces”, Math. Notes, 36:1 (1984), 530–537 | DOI | MR | Zbl

[203] I. G. Tsar'kov, “Relations between certain classes of sets in Banach spaces”, Math. Notes, 40:2 (1986), 597–610 | DOI | MR | Zbl

[204] I. G. Tsar'kov, “On compact and weakly compact Tchebycheff sets in normed linear spaces”, Soviet Math. Dokl., 37:3 (1988), 629–631 | MR | Zbl

[205] I. G. Tsar'kov, “Compact and weakly compact Tchebysheff sets in normed linear spaces”, Proc. Steklov Inst. Math., 189 (1990), 199–215 | MR | Zbl

[206] I. G. Tsarkov, “Lokalnaya ‘odnorodnost’ mnozhestva edinstvennosti”, Matem. zametki, 45:5 (1989), 121–123 | MR | Zbl

[207] I. G. Tsar'kov, “Continuity of the metric projection, structural and approximate properties of sets”, Math. Notes, 47:2 (1990), 218–227 | DOI | MR | Zbl

[208] I. G. Tsar'kov, “Properties of the sets that have a continuous selection from the operator $P^\delta$”, Math. Notes, 48:4 (1990), 1052–1058 | DOI | MR | Zbl

[209] I. G. Tsar'kov, “Nonunique solvability of certain differential equations and their connection with geometric approximation theory”, Math. Notes, 75:2 (2004), 259–271 | DOI | DOI | MR | Zbl

[210] I. G. Tsar'kov, “Stability of the unique solvability for some differential equations”, Proc. Steklov Inst. Math. (Suppl.), 264:suppl. 1 (2009), S185–S198 | DOI | Zbl

[211] I. G. Tsar'kov, “Properties of sets admitting stable $\varepsilon$-selections”, Math. Notes, 89:4 (2011), 572–576 | DOI | DOI | MR | Zbl

[212] I. G. Tsar'kov, “Approximative compactness and nonuniqueness in variational problems, and applications to differential equations”, Sb. Math., 202:6 (2011), 909–934 | DOI | DOI | MR | Zbl

[213] I. G. Tsar'kov, “Stability of unique solvability of quasilinear equations given additional data”, Math. Notes, 90:6 (2011), 894–919 | DOI | DOI | MR | Zbl

[214] I. G. Tsarkov, “Mnozhestva, obladayuschie nepreryvnoi vyborkoi iz operatora pochti nailuchshego priblizheniya”, Matem. sb., 207:2 (2016), 123–142 | DOI

[215] A. A. Vasil'eva, “Closed spans in vector-valued function spaces and their approximative properties”, Izv. Math., 68:4 (2004), 709–747 | DOI | DOI | MR | Zbl

[216] A. A. Vasil'eva, “An existence criterion for a smooth function under constraints”, Math. Notes, 82:3 (2007), 295–308 | DOI | DOI | MR | Zbl

[217] L. P. Vlasov, “Approximately convex sets in Banach spaces”, Soviet Math. Dokl., 6 (1965), 876–879 | MR | Zbl

[218] L. P. Vlasov, Chebyshevskie mnozhestva i ikh obobscheniya, Diss. ... kand. fiz.-\allowbreakmatem. nauk, Uralskii gos. un-t, Sverdlovsk, 1967

[219] L. P. Vlasov, “Chebyshev sets and approximately convex sets”, Math. Notes, 2:2 (1967), 600–605 | DOI | MR | Zbl

[220] L. P. Vlasov, “Chebyshev sets and some generalizations of them”, Math. Notes, 3:1 (1968), 36–41 | DOI | MR | Zbl

[221] L. P. Vlasov, “Approximate properties of sets in Banach spaces”, Math. Notes, 7:5 (1970), 358–364 | DOI | MR | Zbl

[222] L. P. Vlasov, “Approximative properties of sets in normed linear shaces”, Russian Math. Surveys, 28:6 (1973), 1–66 | DOI | MR | Zbl

[223] L. P. Vlasov, “Almost convex sets”, Math. Notes, 18:3 (1975), 791–799 | DOI | MR | Zbl

[224] L. P. Vlasov, “‘Suns’ and geometric properties of the unit sphere in a Banach space”, Tr. IMM UrO RAN, 5, 1998, 247–253 | Zbl

[225] R. Wegmann, “Some properties of the peak-set-mapping”, J. Approx. Theory, 8:3 (1973), 262–284 | DOI | MR | Zbl

[226] D. E. Wulbert, Continuity of metric projections. Approximation theory in a normed linear lattice, Thesis (Ph. D.), Univ. Texas, Austin, 1966, 111 pp. | MR

[227] D. E. Wulbert, “Continuity of metric projections”, Trans. Amer. Math. Soc., 134:2 (1968), 335–341 | DOI | MR | Zbl

[228] W. Yang, C. Li, G. A. Watson, “Characterization and uniqueness of nonlinear uniform approximation”, Proc. Edinburgh Math. Soc. (2), 40:3 (1997), 473–482 | DOI | MR | Zbl

[229] M. V. Yashina, “The density of the uniqueness set of some extremal problems”, Moskow Univ. Math. Bull., 41:6 (1986), 41–44 | MR | Zbl

[230] M. V. Yashina, O edinstvennosti resheniya nelineinykh zadach upravleniya sistemami s raspredelennymi parametrami, Diss. ... kand. fiz.-matem. nauk, M., MGU, 1989

[231] L. Zajíček, “On $\sigma$-porous sets in abstract spaces”, Abstr. Appl. Anal., 2005:5 (2005), 509–534 | DOI | MR | Zbl