@article{RM_2015_70_6_a9,
author = {S. K. Godunov and V. T. Zhukov and M. I. Lazarev and I. L. Sofronov and V. I. Turchaninov and A. S. Kholodov and S. V. Tsynkov and B. N. Chetverushkin and Ye. Yu. Epshteyn},
title = {Viktor {Solomonovich} {Ryaben'kii} and his school (on his 90th birthday)},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {1183--1210},
year = {2015},
volume = {70},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2015_70_6_a9/}
}
TY - JOUR AU - S. K. Godunov AU - V. T. Zhukov AU - M. I. Lazarev AU - I. L. Sofronov AU - V. I. Turchaninov AU - A. S. Kholodov AU - S. V. Tsynkov AU - B. N. Chetverushkin AU - Ye. Yu. Epshteyn TI - Viktor Solomonovich Ryaben'kii and his school (on his 90th birthday) JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2015 SP - 1183 EP - 1210 VL - 70 IS - 6 UR - http://geodesic.mathdoc.fr/item/RM_2015_70_6_a9/ LA - en ID - RM_2015_70_6_a9 ER -
%0 Journal Article %A S. K. Godunov %A V. T. Zhukov %A M. I. Lazarev %A I. L. Sofronov %A V. I. Turchaninov %A A. S. Kholodov %A S. V. Tsynkov %A B. N. Chetverushkin %A Ye. Yu. Epshteyn %T Viktor Solomonovich Ryaben'kii and his school (on his 90th birthday) %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2015 %P 1183-1210 %V 70 %N 6 %U http://geodesic.mathdoc.fr/item/RM_2015_70_6_a9/ %G en %F RM_2015_70_6_a9
S. K. Godunov; V. T. Zhukov; M. I. Lazarev; I. L. Sofronov; V. I. Turchaninov; A. S. Kholodov; S. V. Tsynkov; B. N. Chetverushkin; Ye. Yu. Epshteyn. Viktor Solomonovich Ryaben'kii and his school (on his 90th birthday). Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 70 (2015) no. 6, pp. 1183-1210. http://geodesic.mathdoc.fr/item/RM_2015_70_6_a9/
[1] V. S. Rjabenki, A. F. Filippow, Über die Stabilität von Differenzengleichungen, Mathematik für Naturwissenschaft und Technik, 3, VEB Deutscher Verlag der Wissenschaften, Berlin, 1960, viii+136 pp. | MR | MR | Zbl | Zbl
[2] R. Courant, K. Friedrichs, H. Lewy, “Über die partiellen Differenzengleichungen der mathematischen Physik”, Math. Ann., 100:1 (1928), 32–74 | DOI | MR | Zbl
[3] P. D. Lax, R. D. Richtmyer, “Survey of the stability of linear finite difference equations”, Comm. Pure Appl. Math., 9:2 (1956), 267–293 | DOI | MR | Zbl
[4] S. K. Godunov, V. S. Ryabenki, Theory of difference schemes. An introduction, North-Holland Publishing Co., Amsterdam; Interscience Publishers John Wiley and Sons, New York, 1964, xii+289 pp. | MR | MR | Zbl | Zbl
[5] S. K. Godunov, V. S. Ryabenkii, Raznostnye skhemy. Vvedenie v teoriyu, Nauka, M., 1973, 400 pp. ; 2-Рμ РёР·Рґ., 1977, 440 СЃ. ; S. Godounov, V. Ryabenki, Schemas aux différences. Introduction à la théorie, Moscow, Editions Mir, 1977, 361 pp. ; S. K. Godunov, V. S. Ryaben'kii, Difference schemes. An introduction to the underlying theory, Stud. Math. Appl., 19, North-Holland Publishing Co., Amsterdam, 1987, xvii+489 СЃ. | Zbl | MR | MR | Zbl | Zbl
[6] S. K. Godunov, V. S. Ryaben'kii, “Spectral stability criteria for boundary-value problems for non-self-adjoint difference equations”, Russian Math. Surveys, 18:3 (1965), 1–12 | DOI | MR | Zbl
[7] S. K. Godunov, Prilozhenie k kn.:: A. N. Malyshev, Vvedenie v vychislitelnuyu lineinuyu algebru, Nauka, Novosibirsk, 1991, 204–223 | MR | Zbl
[8] L. N. Trefethen, M. Embree, Spectra and pseudospectra. The behavior of nonnormal matrices and operators, Princeton Univ. Press, Princeton, NJ, 2005, xviii+606 pp. | MR | Zbl
[9] S. K. Godunov, Yu. D. Manuzina, M. A. Nazar'eva, “Experimental analysis of convergence of the numerical solution to a generalized solution in fluid dynamics”, Comput. Math. Math. Phys., 51:1 (2011), 88–95 ; МатРμРј. замРμтки, 7:5 (1970), 655–663 | DOI | MR | Zbl | MR
[10] V. S. Ryaben'kii, “Certain problems of the theory of difference boundary value problems”, Math. Notes, 7:5 (1970), 393–397 | DOI | MR
[11] A. Ya. Belyankov, K razvitiyu metoda vnutrennikh granichnykh uslovii v teorii raznostnykh skhem, Dis. ...kand. fiz.-matem. nauk, IPM AN SSSR, M., 1977
[12] A. A. Reznik, “Approximation of the potential surfaces of elliptic operators by difference potentials”, Soviet Math. Dokl., 25:2 (1982), 543–545 | MR | Zbl
[13] A. A. Reznik, Approksimatsiya poverkhnostnykh potentsialov ellipticheskikh operatorov raznostnymi potentsialami i reshenie kraevykh zadach, Dis.\;...\;kand. fiz.-matem. nauk, MFTI, M., 1983
[14] R. P. Fedorenko, “A relaxation method for solving elliptic difference equations”, U.S.S.R. Comput. Math. Math. Phys., 1:4 (1962), 1092–1096 | DOI | MR | Zbl
[15] V. S. Ryabenkii, “Obschaya konstruktsiya raznostnoi formuly Grina i sootvetstvuyuschikh ei granichnogo proektora i vnutrennikh granichnykh uslovii na osnove vspomogatelnoi raznostnoi funktsii Grina i ponyatiya chetkogo raznostnogo sleda”, Preprinty IPM im. M. V. Keldysha, 1983, 015, 25 pp.
[16] V. S. Ryaben'kii, “Generalization of Calderón projections and boundary equations on the basis of the notion of precise trace”, Soviet Math. Dokl., 27:3 (1983), 600–604 | MR | Zbl
[17] V. S. Ryaben'kii, “Boundary equations with projections”, Russian Math. Surveys, 40:2 (1985), 147–183 | DOI | MR | Zbl
[18] V. S. Ryabenkii, Metod raznostnykh potentsialov dlya nekotorykh zadach mekhaniki sploshnykh sred, Nauka, M., 1987, 320 pp. | MR | Zbl
[19] M. I. Lazarev, “Potentials of linear operators and reduction of boundary value problems to the boundary”, Soviet Math. Dokl., 35:1 (1987), 175–177 | MR | Zbl
[20] I. L. Sofronov, Razvitie metoda raznostnykh potentsialov i primenenie ego k resheniyu statsionarnykh zadach difraktsii, Dis.\;...\;kand. fiz.-matem. nauk, MFTI, M., 1984, 177 pp.
[21] A. A. Reznik, V. S. Ryaben'kii, I. L. Sofronov, V. I. Turchaninov, “An algorithm of the method of difference potentials”, U.S.S.R. Comput. Math. Math. Phys., 25:5 (1985), 144–151 | DOI | MR | Zbl
[22] I. L. Sofronov, “A numerical iterative method for solving regular elliptic problems”, U.S.S.R. Comput. Math. Math. Phys., 29:3 (1989), 193–201 | DOI | MR | Zbl
[23] V. S. Ryabenkii, I. L. Sofronov, “Chislennoe reshenie prostranstvennykh vneshnikh zadach dlya uravnenii Gelmgoltsa metodom raznostnykh potentsialov”, Chislennoe modelirovanie v aerogidrodinamike, Nauka, M., 1986, 187–201 | Zbl
[24] E. V. Zinovev, Reshenie vneshnei zadachi dlya uravneniya Gelmgoltsa metodom raznostnykh potentsialov. Primenenie k raschetu akusticheskikh vzaimodeistvii osesimmetrichnykh elementov mashin, Dis.\;...\;kand. fiz.-matem. nauk, IPM im. M. V. Keldysha AN SSSR, M., 1990, 105 pp.
[25] V. S. Ryabenkii, S. V. Tsynkov, “Iskusstvennye granichnye usloviya dlya chislennogo resheniya vneshnikh zadach vyazkogo obtekaniya”, Preprinty IPM im. M. V. Keldysha AN SSSR, 1993, 045, 046
[26] V. S. Ryaben'kii, S. V. Tsynkov, “Artificial boundary conditions for the numerical solution of external viscous flow problems”, SIAM J. Numer. Anal., 32:5 (1995), 1355–1389 | DOI | MR | Zbl
[27] V. S. Ryaben'kii, V. A. Torgashov, “The method of difference potentials for the numerical solution of an interior problem on plane flow of a viscous incompressible fluid”, Russian Acad. Sci. Dokl. Math., 50:1 (1995), 108–113 | MR | Zbl
[28] V. S. Ryabenkii, V. A. Torgashov, “Bezyteratsionnyi sposob resheniya neyavnoi raznostnoi skhemy dlya uravnenii Nave–Stoksa v peremennykh: zavikhrennost i funktsiya toka”, Matem. modelirovanie, 8:10 (1996), 100–112 | MR | Zbl
[29] M. N. Mishkov, Postroenie iskusstvennykh granichnykh uslovii s ispolzovaniem obobschennogo predelnogo pogloscheniya, Dis. ...kand. fiz.-matem. nauk, IMM, M., 1997, 109 pp.
[30] M. N. Mishkov, V. S. Ryabenkii, “Issledovanie iskusstvennykh granichnykh uslovii, postroennykh s pomoschyu periodizatsii i vvedeniya malogo parametra, dlya zadach dozvukovogo obtekaniya”, Matem. modelirovanie, 10:9 (1998), 87–98 | MR | Zbl
[31] D. S. Kamenetskii, “Difference potentials and parameterization of solutions of homogeneous difference equations”, Comput. Math. Math. Phys., 38:11 (1998), 1754–1767 | MR | Zbl
[32] D. S. Kamenetskii, “Difference generalized Poincaré–Steklov operators and potentials with densities from a jump space”, Comput. Math. Math. Phys., 39:8 (1999), 1275–1282 | MR | Zbl
[33] S. V. Tsynkov, “On the definition of surface potentials for finite-difference operators”, J. Sci. Comput., 18:2 (2003), 155–189 | DOI | MR | Zbl
[34] S. V. Tsynkov, “An application of nonlocal external conditions to viscous flow computations”, J. Comput. Phys., 116:2 (1995), 212–225 | DOI | MR | Zbl
[35] S. V. Tsynkov, E. Turkel, S. Abarbanel, “External flow computations using global boundary conditions”, AIAA J., 34:4 (1996), 700–706 | DOI
[36] S. V. Tsynkov, V. N. Vatsa, “Improved treatment of external boundary conditions for three-dimensional flow computations”, AIAA J., 36:11 (1998), 1998–2004 | DOI
[37] S. V. Tsynkov, “External boundary conditions for three-dimensional problems of computational aerodynamics”, SIAM J. Sci. Comput., 21:1 (1999), 166–206 | DOI | MR | Zbl
[38] S. Tsynkov, S. Abarbanel, J. Nordström, V. Ryaben'kii, V. Vatsa, “Global artificial boundary conditions for computation of external flows with jets”, AIAA J., 38:11 (2000), 2014–2022 | DOI
[39] S. V. Tsynkov, Nelokalnye iskusstvennye granichnye usloviya dlya chislennogo resheniya zadach v neogranichennykh oblastyakh, Dis.\;...\;dokt. fiz.-matem. nauk, M., 2003, 217 pp.
[40] V. S. Ryaben'kii, “Faithful transfer of difference boundary conditions”, Funct. Anal. Appl., 24:3 (1990), 251–253 | DOI | MR | Zbl
[41] I. L. Sofronov, “Conditions for complete transparency on the sphere for the three-dimensional wave equation”, Russian Acad. Sci. Dokl. Math., 46:2 (1993), 397–401 | MR | Zbl
[42] I. L. Sofronov, “Usloviya polnoi prozrachnosti dlya volnovogo uravneniya”, Preprinty IPM im. M. V. Keldysha RAN, 1993, 076, 25 pp.
[43] A. Dedner, D. Kröner, I. L. Sofronov, M. Wesenberg, “Transparent boundary conditions for MHD simulations in stratified atmospheres”, J. Comput. Phys., 171:2 (2001), 448–478 | DOI | Zbl
[44] J. Ballmann, G. Britten, I. Sofronov, “Time-accurate inlet and outlet conditions for unsteady transonic channel flow”, AIAA J., 40:9 (2002), 1745–1754 | DOI
[45] A. Arnold, M. Ehrhardt, I. Sofronov, “Discrete transparent boundary conditions for the Schrödinger equation: fast calculation, approximation, and stability”, Commun. Math. Sci., 1:3 (2003), 501–556 | DOI | MR | Zbl
[46] I. L. Sofronov, “O primenenii prozrachnykh granichnykh uslovii v zadachakh aeroakustiki”, Matem. modelirovanie, 19:8 (2007), 105–112 | Zbl
[47] N. A. Zaitsev, I. L. Sofronov, “Primenenie prozrachnykh granichnykh uslovii dlya resheniya dvumernykh zadach uprugosti s azimutalnoi anizotropiei”, Matem. modelirovanie, 19:8 (2007), 49–54 | MR | Zbl
[48] I. L. Sofronov, N. A. Zaitsev, “Numerical generation of transparent boundary conditions on the side surface of a vertical transverse isotropic layer”, J. Comput. Appl. Math., 234:6 (2010), 1732–1738 | DOI | MR | Zbl
[49] I. L. Sofronov, “Differential part of transparent boundary conditions for certain hyperbolic systems of second-order equations”, Dokl. Math., 79:3 (2009), 412–414 | DOI | MR | Zbl
[50] V. I. Turchaninov, “The gap phenomenon for solutions of the difference 3D-wave equation”, Dokl. Math., 62:3 (2000), 381 | MR | Zbl
[51] V. S. Ryabenkii, V. I. Turchaninov, S. V. Tsynkov, “Ispolzovanie lakun reshenii 3D-volnovogo uravneniya dlya vychisleniya resheniya na bolshikh vremenakh”, Matem. modelirovanie, 11:12 (1999), 113–126 | MR | Zbl
[52] V. S. Ryabenkii, V. I. Turchaninov, S. V. Tsynkov, “Neotrazhayuschie iskusstvennye granichnye usloviya dlya zameny otbrasyvaemykh uravnenii s lakunami”, Matem. modelirovanie, 12:12 (2000), 108–127 | MR | Zbl
[53] V. S. Ryaben'kii, S. V. Tsynkov, V. I. Turchaninov, “Long-time numerical computation of wave-type solutions driven by moving sources”, Appl. Numer. Math., 38:1-2 (2001), 187–222 | DOI | MR | Zbl
[54] V. S. Ryaben'kii, S. V. Tsynkov, V. I. Turchaninov, “Global discrete artificial boundary conditions for time-dependent wave propagation”, J. Comput. Phys., 174:2 (2001), 712–758 | DOI | MR | Zbl
[55] S. V. Tsynkov, “Artificial boundary conditions for the numerical simulation of unsteady acoustic waves”, J. Comput. Phys., 189:2 (2003), 626–650 | DOI | MR | Zbl
[56] S. V. Tsynkov, “On the application of lacunae-based methods to Maxwell's equations”, J. Comput. Phys., 199:1 (2004), 126–149 | DOI | MR | Zbl
[57] H. Qasimov, S. Tsynkov, “Lacunae based stabilization of PMLs”, J. Comput. Phys., 227:15 (2008), 7322–7345 | DOI | MR | Zbl
[58] E. T. Meier, A. H. Glasser, V. S. Lukin, U. Shumlak, “Modeling open boundaries in dissipative MHD simulation”, J. Comput. Phys., 231:7 (2012), 2963–2976 | DOI | MR | Zbl
[59] S. V. Petropavlovsky, S. V. Tsynkov, “Quasi-lacunae of Maxwell's equations”, SIAM J. Appl. Math., 71:4 (2011), 1109–1122 | DOI | MR | Zbl
[60] S. V. Petropavlovsky, S. V. Tsynkov, “A non-deteriorating algorithm for computational electromagnetism based on quasi-lacunae of Maxwell's equations”, J. Comput. Phys., 231:2 (2012), 558–585 | DOI | MR | Zbl
[61] V. S. Ryaben'kii, V. I. Turchaninov, Ye. Yu. Epshteyn, “Algorithm composition scheme for problems in composite domains based on the difference potential method”, Comput. Math. Math. Phys., 46:10 (2006), 1768–1784 | DOI | MR
[62] Y. Epshteyn, “Algorithms composition approach based on difference potentials method for parabolic problems”, Commun. Math. Sci., 12:4 (2014), 723–755 | DOI | MR | Zbl
[63] M. Medvinsky, S. Tsynkov, E. Turkel, “The method of difference potentials for the Helmholtz equation using compact high order schemes”, J. Sci. Comput., 53:1 (2012), 150–193 | DOI | MR | Zbl
[64] M. Medvinsky, S. Tsynkov, E. Turkel, “High order numerical simulation of the transmission and scattering of waves using the method of difference potentials”, J. Comput. Phys., 243 (2013), 305–322 | DOI | MR
[65] D. S. Britt, S. V. Tsynkov, E. Turkel, “A high-order numerical method for the Helmholtz equation with non-standard boundary conditions”, SIAM J. Sci. Comput., 35:5 (2013), A2255–A2292 | DOI | MR | Zbl
[66] S. Britt, S. Petropavlovsky, S. Tsynkov, E. Turkel, “Computation of singular solutions to the Helmholtz equation with high order accuracy”, Appl. Numer. Math., 93 (2015), 215–241 | DOI | MR | Zbl
[67] S. Britt, S. Tsynkov, E. Turkel, “Numerical simulation of time-harmonic waves in inhomogeneous media using compact high order schemes”, Commun. Comput. Phys., 9:3 (2011), 520–541 | DOI | MR
[68] E. Turkel, D. Gordon, R. Gordon, S. Tsynkov, “Compact 2D and 3D sixth order schemes for the Helmholtz equation with variable wave number”, J. Comput. Phys., 232:1 (2013), 272–287 | DOI | MR | Zbl
[69] Y. Epshteyn, S. Phippen, “High-order difference potentials methods for 1D elliptic type models”, Appl. Numer. Math., 93 (2015), 69–86 | DOI | MR | Zbl
[70] J. Albright, Y. Epshteyn, K. R. Steffen, “High-order accurate difference potentials methods for parabolic problems”, Appl. Numer. Math., 93 (2015), 87–106 | DOI | MR | Zbl
[71] V. S. Ryaben'kii, “Finite-difference shielding problem”, Funct. Anal. Appl., 29:1 (1995), 70–71 | DOI | MR | Zbl
[72] “Joint sessions of the Petrovskii Seminar on differential equations and mathematical problems of physics and of the Moscow Mathematical Society (seventeenth session, 24–27 January 1995)”, Russian Math. Surveys, 50:4 (1995) | DOI
[73] R. I. Veĭtsman, V. S. Ryaben'kiĭ, “Difference problems of screening and imitation”, Dokl. Math., 55:3 (1997), 340–343 | MR | Zbl
[74] R. I. Veĭtsman, V. S. Ryaben'kiĭ, “Finite difference problems in simulation”, Trans. Moscow Math. Soc., 1997, 239–248 | MR | Zbl
[75] E. V. Zinovev, V. S. Ryabenkii, Sposob aktivnogo podavleniya shuma, Patent Rossiiskoi Federatsii No 6G01K11/16 (01.2.281001), Gos. in-t patentnoi informatsii, M., 1996
[76] J. Lončarić, V. S. Ryaben'kii, S. V. Tsynkov, “Active shielding and control of noise”, SIAM J. Appl. Math., 62:2 (2001), 563–596 | DOI | MR | Zbl
[77] V. S. Ryaben'kii, S. V. Utyuzhnikov, S. V. Tsynkov, “The problem of active noise shielding in composite domains”, Dokl. Math., 74:3 (2006), 812–814 | DOI | MR | Zbl
[78] V. S. Ryaben'kii, S. V. Tsynkov, S. V. Utyuzhnikov, “Inverse source problem and active shielding for composite domains”, Appl. Math. Lett., 20:5 (2007), 511–515 | DOI | MR | Zbl
[79] V. S. Ryaben'kii, S. V. Tsynkov, S. V. Utyuzhnikov, “Active control of sound with variable degree of cancellation”, Appl. Math. Lett., 22:12 (2009), 1846–1851 | DOI | MR | Zbl
[80] V. S. Ryaben'kii, “Use of weak noise for real-time control of strong noise suppression in a shielded subdomain”, Dokl. Math., 81:1 (2010), 137–138 | DOI | MR | Zbl
[81] A. W. Peterson, S. V. Tsynkov, “Active control of sound for composite regions”, SIAM J. Appl. Math., 67:6 (2007), 1582–1609 | DOI | MR | Zbl
[82] J. Lončarić, S. V. Tsynkov, “Optimization of acoustic source strength in the problems of active noise control”, SIAM J. Appl. Math., 63:4 (2003), 1141–1183 | DOI | MR | Zbl
[83] J. Lončarić, S. V. Tsynkov, “Optimization of power in the problems of active control of sound”, Math. Comput. Simulation, 65:4-5 (2004), 323–335 | DOI | MR | Zbl
[84] H. Lim, S. V. Utyuzhnikov, Y. W. Lam, A. Turan, M. R. Avis, V. S. Ryaben'kii, S. V. Tsynkov, “Experimental validation of the active noise control methodology based on difference potentials”, AIAA J., 47:4 (2009), 874–884 | DOI
[85] V. S. Ryaben'kii, “Real-time noise suppression in a three-dimensional protected subdomain as based on information from synchronous noise exploration”, Dokl. Math., 84:1 (2011), 562–564 | DOI | MR | Zbl
[86] V. S. Ryaben'kii, “Model of real-time active noise shielding of a given subdomain subject to external noise sources”, Comput. Math. Math. Phys., 51:3 (2011), 444–454 | DOI | MR | Zbl
[87] V. S. Ryaben'kii, “Synchronous exploration for the control of real-time external noise suppression in a three-dimensional subdomain”, Comput. Math. Math. Phys., 51:10 (2011), 1777–1791 | DOI | MR | Zbl
[88] V. S. Ryaben'kii, “Key information to control solutions of linear difference schemes in composite domains”, Dokl. Math., 85:3 (2012), 441–442 | DOI | MR | Zbl
[89] V. S. Ryaben'kii, “Mathematical model of devices used to suppress external noise in a subregion of space”, Math. Models Comput. Simul., 5:2 (2013), 103–121 | DOI | MR | Zbl
[90] V. S. Ryabenkii, V. I. Turchaninov, “Chislennye eksperimenty po upravleniyu podavleniem shuma v realnom vremeni”, Preprinty IPM im. M. V. Keldysha RAN (to appear)
[91] V. S. Ryabenkii, Vvedenie v vychislitelnuyu matematiku, Fizmatlit, M., 1994, 335 pp. ; 2-Рμ РёР·Рґ., 2000, 296 СЃ. ; 3-Рμ РёР·Рґ., 2008, 288 СЃ. | MR | Zbl | Zbl
[92] V. S. Ryaben'kii, S. V. Tsynkov, A theoretical introduction to numerical analysis, Chapman Hall/CRC, Boca Raton, FL, 2007, xiv+537 pp. | MR | Zbl
[93] V. D. Ivanov, V. I. Kosarev, A. I. Lobanov, I. B. Petrov, V. B. Pirogov, V. S. Ryabenkii, T. K. Starozhilova, A. G. Tormasov, S. V. Utyuzhnikov, A. S. Kholodov, Laboratornyi praktikum “Osnovy vychislitelnoi matematiki”, Ucheb. posobie MFTI, 2-e izd., ispr. i dop., MZ Press, M., 2003, 194 pp.
[94] V. S. Ryabenkii, Metod raznostnykh potentsialov i ego prilozheniya, 2-e izd., ispr. i dop., Fizmatlit, M., 2002, 494 pp. ; 3-Рμ РёР·Рґ., 2010, 432 СЃ.; V. S. Ryaben'kii, Method of difference potentials and its applications, Springer Ser. Comput. Math., 30, Springer-Verlag, Berlin, 2002, xviii+538 pp. | Zbl | DOI | MR | Zbl
[95] Appl. Numer. Math., 93, Special issue: International Conference “Difference Schemes and Applicatons” in honor of the 90-th birthday of Professor V. S. Ryaben'kii (2015), 1–294 | DOI