Virtual polytopes
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 70 (2015) no. 6, pp. 1105-1165 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Originating in diverse branches of mathematics, from polytope algebra and toric varieties to the theory of stressed graphs, virtual polytopes represent a natural algebraic generalization of convex polytopes. Introduced as elements of the Grothendieck group associated to the semigroup of convex polytopes, they admit a variety of geometrizations. The present survey connects the theory of virtual polytopes with other geometrical subjects, describes a series of geometrizations together with relations between them, and gives a selection of applications. Bibliography: 50 titles.
Keywords: Minkowski difference, coloured polygon, polytopal function, support functions, stressed graph, McMullen's polytope algebra, Maxwell polytope.
@article{RM_2015_70_6_a3,
     author = {G. Yu. Panina and I. Streinu},
     title = {Virtual polytopes},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {1105--1165},
     year = {2015},
     volume = {70},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2015_70_6_a3/}
}
TY  - JOUR
AU  - G. Yu. Panina
AU  - I. Streinu
TI  - Virtual polytopes
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2015
SP  - 1105
EP  - 1165
VL  - 70
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/RM_2015_70_6_a3/
LA  - en
ID  - RM_2015_70_6_a3
ER  - 
%0 Journal Article
%A G. Yu. Panina
%A I. Streinu
%T Virtual polytopes
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2015
%P 1105-1165
%V 70
%N 6
%U http://geodesic.mathdoc.fr/item/RM_2015_70_6_a3/
%G en
%F RM_2015_70_6_a3
G. Yu. Panina; I. Streinu. Virtual polytopes. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 70 (2015) no. 6, pp. 1105-1165. http://geodesic.mathdoc.fr/item/RM_2015_70_6_a3/

[1] A. V. Pukhlikov, A. G. Khovanskii, “Finitely additive measures of virtual polytopes”, St. Petersburg Math. J., 4:2 (1993), 337–356 | MR | Zbl

[2] A. D. Alexandroff, “Sur les théorèmes d'unicité pour les surfaces fermées”, Dokl. AN SSSR, 22:3 (1939), 99–102 | Zbl

[3] H. Groemer, “Minkowski addition and mixed volumes”, Geometriae Dedicata, 6:2 (1977), 141–163 | DOI | MR | Zbl

[4] L. Rodríguez, H. Rosenberg, “Rigidity of certain polyhedra in $\mathbf R^3$”, Comment. Math. Helv., 75:3 (2000), 478–503 | DOI | MR | Zbl

[5] V. Alexandrov, “Minkowski-type and Alexandrov-type theorems for polyhedral herissons”, Geom. Dedicata, 107 (2004), 169–186 | DOI | MR | Zbl

[6] Y. Martinez-Maure, “Théorie des hérissons et polytopes”, C. R. Math. Acad. Sci. Paris, 336:3 (2003), 241–244 | DOI | MR | Zbl

[7] P. McMullen, “The polytope algebra”, Adv. Math., 78:1 (1989), 76–130 | DOI | MR | Zbl

[8] R. Schneider, Convex bodies: the Brunn–Minkowski theory, Encyclopedia Math. Appl., 44, Cambridge Univ. Press, Cambridge, 1993, xiv+490 pp. | DOI | MR | Zbl

[9] G. Ewald, Combinatorial convexity and algebraic geometry, Grad. Texts in Math., 168, Springer-Verlag, New York, 1996, xiv+372 pp. | DOI | MR | Zbl

[10] G. Yu. Panina, “Virtual polytopes and classical questions in geometry”, St. Petersburg Math. J., 14:5 (2003), 823–834 | MR | Zbl

[11] O. Ya. Viro, “Some integral calculus based on {E}uler characteristic”, Topology and geometry – Rohlin seminar, Lecture Notes in Math., 1346, Springer, Berlin, 1988, 127–138 | DOI | MR | Zbl

[12] G. Yu. Panina, “The structure of the virtual polytope group relative to cylinder subgroups”, St. Petersburg Math. J., 13:3 (2002), 471–484 | MR | Zbl

[13] P. McMullen, “Separation in the polytope algebra”, Beiträge Algebra Geom., 34:1 (1993), 15–30 | MR | Zbl

[14] W. Fulton, B. Sturmfels, “Intersection theory on toric varieties”, Topology, 36:2 (1997), 335–353 | DOI | MR | Zbl

[15] M. Brion, “The structure of the polytope algebra”, Tohoku Math. J. (2), 49:1 (1997), 1–32 | MR | Zbl

[16] R. P. Stanley, “The number of faces of a simplicial convex polytope”, Adv. in Math., 35:3 (1980), 236–238 | DOI | MR | Zbl

[17] P. McMullen, “On simple polytopes”, Invent. Math., 113 (1993), 419–444 | DOI | MR | Zbl

[18] V. A. Timorin, “An analogue of the Hodge–Riemann relations for simple convex polytopes”, Russian Math. Surveys, 54:2 (1999), 381–426 | DOI | DOI | MR | Zbl

[19] V. M. Buchstaber, “Ring of simple polytopes and differential equations”, Proc. Steklov Inst. Math., 263 (2008), 13–37 | DOI | MR | Zbl

[20] V. M. Buchstaber, N. Yu. Erokhovets, “Polytopes, Fibonacci numbers, Hopf algebras, and quasi-symmetric functions”, Russian Math. Surveys, 66:2 (2011), 271–367 | DOI | DOI | MR | Zbl

[21] T. Oda, Convex bodies and algebraic geometry. An introduction to the theory of toric varieties, Ergeb. Math. Grenzgeb. (3), 15, Springer-Verlag, Berlin, 1988, viii+212 pp. | MR | Zbl

[22] G. Panina, “On hyperbolic virtual polytopes and hyperbolic fans”, Cent. Eur. J. Math., 4:2 (2006), 270–293 | DOI | MR | Zbl

[23] G. Yu. Panina, “Pointed spherical tilings and hyperbolic virtual polytopes”, Geometriya i topologiya. 11, Zap. nauch. sem. POMI, 372, POMI, SPb., 2009, 157–171 ; J. Math. Sci. (N. Y.), 175:5 (2011), 591–599 | MR | Zbl | DOI

[24] G. Panina, “New counterexamples to A. D. Alexandrov's hypothesis”, Adv. Geom., 5:2 (2005), 301–317 | DOI | MR | Zbl

[25] C. J. Brianchon, “Théorème nouveau sur les polyèdres”, J. Ecole (Royale) Polytechnique, 15 (1837), 317–319

[26] J. C. Maxwell, “On reciprocal figures, frames, and diagrams of forces”, Trans. R. Soc. Edinburgh, 26:1 (1870), 1–40 | DOI | Zbl

[27] G. M. Ziegler, Lectures on polytopes, Grad. Texts in Math., 152, Springer-Verlag, New York, 1995, x+370 pp. | DOI | MR | Zbl

[28] Y. Martinez-Maure, “Contre-exemple à une caractérisation conjecturée de la sphère”, C. R. Acad. Sci. Paris Sér. I Math., 332:1 (2001), 41–44 | DOI | MR | Zbl

[29] M. Knyazeva, G. Panina, “An illustrated theory of hyperbolic virtual polytopes”, Cent. Eur. J. Math., 6:2 (2008), 204–217 | DOI | MR | Zbl

[30] M. Knyazeva, G. Panina, A counterexample to A. D. Alexandrov's conjecture, EG-Models – archive of electronic geometry models, model No 2010.02.002, 2010 http://www.eg-models.de/models/Surfaces/2010.02.002/_preview.html

[31] G. Panina, “A. D. Alexandrov's uniqueness theorem for convex polytopes and its refinements”, Beiträge Algebra Geom., 49:1 (2008), 59–70 | MR | Zbl

[32] G. Panina, “Around A. D. Alexandrov's uniqueness theorem for convex polytopes”, Adv. Geom., 12:4 (2012), 621–637 | DOI | MR | Zbl

[33] G. Rote, F. Santos, I. Streinu, “Pseudo-triangulations – a survey”, Surveys on discrete and computational geometry. Twenty years later, Contemp. Math., 453, Amer. Math. Soc., Providence, RI, 2008, 343–410 ; 2006 (v2 – 2007), 68 pp., arXiv: math/0612672 | DOI | MR | Zbl

[34] I. Streinu, “A combinatorial approach to planar non-colliding robot arm motion planning”, 41st Annual Symposium on Foundations of Computer Science (Redondo Beach, CA, 2000), IEEE Comput. Soc. Press, Los Alamitos, CA, 2000, 443–453 | DOI | MR | Zbl

[35] I. Streinu, “Pseudo-triangulations, rigidity and motion planning”, Discrete Comput. Geom., 34:4 (2005), 587–635 | DOI | MR | Zbl

[36] G. A. Pick, “Geometrisches zur Zahlenlehre”, Sonderabdr. Naturw.-medizin. Verein f. Böhmen “Lotos”, 19 (1899), 311–319 | Zbl

[37] B. Gr{ü}nbaum, Convex polytopes, Pure and Applied Mathematics, 16, Interscience Publishers John Wiley Sons, Inc., New York, 1967, xiv+456 pp. | MR | Zbl

[38] P. Norbury, “Counting lattice points in the moduli space of curves”, Math. Res. Lett., 17:3 (2010), 467–481 ; (2008), 15 pp., arXiv: 0801.4590 | DOI | MR | Zbl

[39] P. McMullen, “Valuations and {E}uler-type relations on certain classes of convex polytopes”, Proc. London Math. Soc. (3), 35:1 (1977), 113–135 | DOI | MR | Zbl

[40] E. Ehrhart, Polynômes arithmétiques et méthode des polyèdres en combinatoire, Internat. Ser. Numer. Math., 35, Birkhäuser Verlag, Basel–Stuttgart, 1977, 165 pp. | MR | Zbl

[41] A. Barvinok, J. E. Pommersheim, “An algorithmic theory of lattice points in polyhedra”, New perspectives in algebraic combinatorics (Berkeley, CA, 1996–97), Math. Sci. Res. Inst. Publ., 38, Cambridge Univ. Press, Cambridge, 1999, 91–147 | MR | Zbl

[42] A. V. Pukhlikov, A. G. Khovanskii, “The Riemann–Roch theorem for integrals and sums of quasipolynomials on virtual polytopes”, St. Petersburg Math. J., 4:4 (1993), 789–812 | MR | Zbl

[43] M. Brion, M. Vergne, “Lattice points in simple polytopes”, J. Amer. Math. Soc., 10:2 (1997), 371–392 | DOI | MR | Zbl

[44] G. Yu. Panina, “Mixed volumes for nonconvex bodies”, J. Contemp. Math. Anal., 28:1 (1993), 63–71 | MR | Zbl

[45] R. Schneider, W. Weil, “Zonoids and related topics”, Convexity and its applications, Birkh{ä}user, Basel, 1983, 296–317 | DOI | MR | Zbl

[46] J. Richter-Gebert, Realization spaces of polytopes, Lecture Notes in Math., 1643, Springer-Verlag, Berlin, 1996, xii+187 pp. | DOI | MR | Zbl

[47] A. Bj{ö}rner, M. {Las Vergnas}, B. Sturmfels, N. White, G. M. Ziegler, Oriented matroids, Encyclopedia Math. Appl., 46, 2nd ed., Cambridge Univ. Press, 1999, xii+548 pp. | DOI | MR | Zbl

[48] V. I. Danilov, “The geometry of toric varieties”, Russian Math. Surveys, 33:2 (1978), 97–154 | DOI | MR | Zbl

[49] A. G. Khovanskii, “Newton polyhedra and toroidal varieties”, Funct. Anal. Appl., 11:4 (1977), 289–296 | DOI | MR | Zbl

[50] F. Khirtsebrukh, Topologicheskie metody v algebraicheskoi geometrii, Mir, M., 1973, 280 pp. ; F. Hirzebruch, Neue topologische Methoden in der algebraischen Geometrie, Ergeb. Math. Grenzgeb. (N. F.), 9, 2. erg. Aufl., Springer-Verlag, Berlin–Göttingen–Heidelberg, 1962, vii+181 pp. ; F. Hirzebruch, Topological methods in algebraic geometry, Grundlehren Math. Wiss., 131, 3rd ed., Springer-Verlag, New York, 1966, x+232 СЃ. | Zbl | MR | Zbl | MR | Zbl