Soliton-like structures on a water-ice interface
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 70 (2015) no. 6, pp. 1051-1103 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper contains a proof of the existence of soliton-like solutions of the complete system of equations describing wave propagation in a fluid of finite depth under an ice cover. These solutions correspond to solitary waves of various kinds propagating along the water-ice interface. The plane-parallel motion is considered in a layer of a perfect fluid of finite depth whose characteristics obey the complete two-dimensional Euler system of equations. The ice cover is modelled by an elastic Kirchhoff–Love plate and has significant thickness, so that the plate's inertia is taken into account in the formulation of the model. The Euler equations contain the additional pressure arising from the presence of the elastic plate floating freely on the fluid surface. The indicated families of solitary waves are parameterized by the speed of the waves, and their existence is proved for speeds lying in some neighbourhood of the critical value corresponding to the quiescent state. The solitary waves, in turn, bifurcate from the quiescent state and lie in some neighbourhood of it. In other words, it is proved that solitary waves of sufficiently small amplitude exist on the water-ice interface. The proof is conducted using the projection of the required system of equations on the centre manifold and a further analysis of the finite-dimensional reduced dynamical system on the centre manifold. Bibliography: 84 titles.
Keywords: ice cover, solitary wave, closed operator, normal forms, centre manifold, resolvent estimates.
Mots-clés : bifurcation
@article{RM_2015_70_6_a2,
     author = {A. T. Il'ichev},
     title = {Soliton-like structures on a water-ice interface},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {1051--1103},
     year = {2015},
     volume = {70},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2015_70_6_a2/}
}
TY  - JOUR
AU  - A. T. Il'ichev
TI  - Soliton-like structures on a water-ice interface
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2015
SP  - 1051
EP  - 1103
VL  - 70
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/RM_2015_70_6_a2/
LA  - en
ID  - RM_2015_70_6_a2
ER  - 
%0 Journal Article
%A A. T. Il'ichev
%T Soliton-like structures on a water-ice interface
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2015
%P 1051-1103
%V 70
%N 6
%U http://geodesic.mathdoc.fr/item/RM_2015_70_6_a2/
%G en
%F RM_2015_70_6_a2
A. T. Il'ichev. Soliton-like structures on a water-ice interface. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 70 (2015) no. 6, pp. 1051-1103. http://geodesic.mathdoc.fr/item/RM_2015_70_6_a2/

[1] J. J. Stoker, Water waves. The mathematical theory with applications, Pure Appl. Math., IV, Interscience Publishers, Inc., New York; Interscience Publishers Ltd., London, 1957, xxviii+567 pp. | MR | Zbl | Zbl

[2] V. A. Squire, “On the critical angle for ocean waves entering shore fast ice”, Cold Reg. Sci. Technol., 10:1 (1984), 59–68 | DOI

[3] E. O. Tuck, “An inviscid theory for sliding flexible sheets”, J. Austral. Math. Soc. Ser. B, 23:4 (1982), 403–415 | DOI | MR | Zbl

[4] L. Brevdo, A. Il'ichev, “Exponential neutral stability of a floating ice layer”, Z. Angew. Math. Phys., 49:3 (1998), 401–419 | DOI | MR | Zbl

[5] L. Brevdo, A. Il'ichev, “Multi-modal destabilization of a floating ice layer by wind stress”, Cold Reg. Sci. Technol., 33:1 (2001), 77–89 | DOI

[6] L. Brevdo, A. Il'ichev, “Uni-modal destabilization of a visco-elastic floating ice layer by wind stress”, Eur. J. Mech. A Solids, 25:3 (2006), 509–525 | DOI | MR | Zbl

[7] J. Strathdee, W. H. Robinson, E. M. Haines, “Moving loads on ice plates of finite thickness”, J. Fluid Mech., 226 (1991), 37–61 | DOI | Zbl

[8] L. K. Forbes, “Surface waves of large amplitude beneath an elastic sheet. I. High order series solution”, J. Fluid Mech., 169 (1986), 409–428 | DOI | MR | Zbl

[9] L. K. Forbes, “Surface waves of large amplitude beneath an elastic sheet. II. Galerkin solutions”, J. Fluid Mech., 188 (1988), 491–508 | DOI | MR | Zbl

[10] A. V. Marchenko, “Long waves in shallow liquid under ice cover”, J. Appl. Math. Mech., 52:2 (1988), 180–183 | DOI | Zbl

[11] A. T. Il'ichev, A. V. Marchenko, “Propagation of long nonlinear waves in a ponderable fluid beneath an ice sheet”, Fluid Dynam., 24:1 (1989), 73–79 | DOI | MR | Zbl

[12] S. V. Muzylev, “Volny v okeane pod ledyanym pokrovom: osnovy teorii i modelnye zadachi”, Sovremennye problemy dinamiki okeana i atmosfery, GU “Gidromettsentr Rossii”, “Triada LTD”, M., 2010, 315–345

[13] R. G. Chowdhury, B. N. Mandal, “Motion due to fundamental singularities in finite depth water with an elastic solid cover”, Fluid Dynam. Res., 38:4 (2006), 224–240 | DOI | MR | Zbl

[14] D. Q. Lu, S. Q. Dai, “Generation of transient waves by impulsive disturbances in an inviscid fluid with an ice-cover”, Arch. Appl. Mech., 76:1-2 (2006), 49–63 | DOI | Zbl

[15] D. Q. Lu, S. Q. Dai, “Flexural- and capillary-gravity waves due to fundamental singularities in an inviscid fluid of finite depth”, Internat. J. Engrg. Sci., 46:11 (2008), 1183–1193 | DOI | MR | Zbl

[16] A. A. Savin, A. S. Savin, “Ice cover perturbation by a dipole in motion within a liquid”, Fluid Dyn., 47:2 (2012), 139–146 | DOI | Zbl

[17] A. T. Ilichev, A. A. Savin, A. S. Savin, “Ustanovlenie volny na ledyanom pokrove nad dvizhuschimsya v zhidkosti dipolem”, Dokl. RAN, 444:2 (2012), 156–159 | MR

[18] M. Hărăguş-Courceille, A. Il'ichev, “Three-dimensional solitary waves in the presence of additional surface effects”, Eur. J. Mech. B Fluids, 17:5 (1998), 739–768 | DOI | MR | Zbl

[19] A. Afendikov, A. Mielke, “Bifurcation of homoclinic orbits to a saddle-focus in reversible systems with SO(2)-symmetry”, J. Differential Equations, 159:2 (1999), 370–402 | DOI | MR | Zbl

[20] A. L. Afendikov, A. Mielke, “Unfoldings of reversible vector fields with SO(2)-symmetry and non-semisimple eigenvalue zero of multiplicity four”, Dokl. Math., 60:3 (1999), 332–336 | MR | Zbl

[21] M.A. Lavrent'ev, “On the theory of long waves”, Amer. Math. Soc. Transl., 102, Amer. Math. Soc., Providence, RI, 1954, 1–50 | MR | MR | Zbl

[22] K. O. Friedrichs, D. H. Hyers, “The existence of solitary waves”, Comm. Pure Appl. Math., 7:3 (1954), 517–550 | DOI | MR | Zbl

[23] J. T. Beale, “The existence of solitary water waves”, Comm. Pure Appl. Math., 30:4 (1977), 373–389 | DOI | MR | Zbl

[24] C. J. Amick, K. Kirchgässner, “A theory of solitary water-waves in the presence of surface tension”, Arch. Ration. Mech. Anal., 105:1 (1989), 1–49 | DOI | MR | Zbl

[25] G. Iooss, K. Kirchgässner, “Water waves for small surface tension: an approach via normal form”, Proc. Roy. Soc. Edinburgh Sect. A, 122:3-4 (1992), 267–299 | DOI | MR | Zbl

[26] D. J. Korteweg, G. de Vries, “On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves”, Phil. Mag. (5), 39:240 (1895), 422–443 | DOI | Zbl

[27] G. Iooss, M. C. Pérouème, “Perturbed homoclinic solutions in reversible $1\,{:}\,1$ resonance vector fields”, J. Differential Equations, 102:1 (1993), 62–88 | DOI | MR | Zbl

[28] G. Iooss, K. Kirchgässner, “Bifurcation d'ondes solitaires en présence d'une faible tension superficielle”, C. R. Acad. Sci. Paris Sér. I Math., 311:5 (1990), 265–268 | MR | Zbl

[29] S. M. Sun, M. C. Shen, “Exponentially small estimate for the amplitude of capillary ripples of a generalized solitary wave”, J. Math. Anal. Appl., 172:2 (1993), 533–566 | DOI | MR | Zbl

[30] E. Lombardi, “Orbits homoclinic to exponentially small periodic orbits for a class of reversible systems. Application to water waves”, Arch. Ration. Mech. Anal., 137:3 (1997), 227–304 | DOI | MR | Zbl

[31] F. Dias, G. Iooss, “Ondes solitaires ‘noires’ à l'interface entre deux fluides en présence de tension superficielle”, C. R. Acad. Sci. Paris Sér. I Math., 319:1 (1994), 89–93 | MR | Zbl

[32] C. J. Amick, J. F. Toland, “On solitary water-waves of finite amplitude”, Arch. Ration. Mech. Anal., 76:1 (1981), 9–95 | DOI | MR | Zbl

[33] C. J. Amick, J. F. Toland, “On periodic water-waves and their convergence to solitary waves in the long-wave limit”, Philos. Trans. R. Soc. Lond. Ser. A, 303:1481 (1981), 633–669 | DOI | MR | Zbl

[34] A. I. Nekrasov, “Tochnaya teoriya voln ustanovivshegosya vida na poverkhnosti tyazheloi zhidkosti”, Sobranie sochinenii, v. 1, Fizmatgiz, M., 1961, 358–439

[35] J. L. Bona, D. K. Bose, R. E. L. Turner, “Finite-amplitude steady waves in stratified fluids”, J. Math. Pures Appl. (9), 62:4 (1983), 389–439 | MR | Zbl

[36] C. J. Amick, R. E. L. Turner, “A global theory of internal solitary waves in two-fluid systems”, Trans. Amer. Math. Soc., 298:2 (1986), 431–484 | DOI | MR | Zbl

[37] E. A. Karabut, “Asymptitic expansions in the problem of a solitary wave”, J. Fluid Mech., 319 (1996), 109–123 | DOI | MR | Zbl

[38] E. A. Karabut, “An approximation for the highest gravity waves on water of finite depth”, J. Fluid Mech., 372 (1998), 45–70 | DOI | MR | Zbl

[39] T. J. Bridges, F. Dias, D. Menasce, “Steady three-dimensional water-wave patterns on a finite-depth fluid”, J. Fluid Mech., 436 (2001), 145–175 | DOI | MR | Zbl

[40] A. Il'ichev, “Steady waves in a cold plasma”, J. Plasma Phys., 55:2 (1996), 181–194 | DOI

[41] A. T. Il'ichev, “Solitary waves in a cold plasma”, Math. Notes, 59:5 (1996), 518–524 | DOI | DOI | MR | Zbl

[42] A. T. Il'ichev, “Solitary wave trains in a cold plasma”, Fluid Dynam., 31:5 (1996), 754–760 | DOI | Zbl

[43] F. Dias, A. Il'ichev, “Interfacial waves with free-surface boundary conditions: an approach via a model equation”, Phys. D, 150:3-4 (2001), 278–300 | DOI | MR | Zbl

[44] A. Il'ichev, “Faraday resonance: asymptotic theory of surface waves”, Phys. D, 119:3-4 (1998), 327–351 | DOI | MR | Zbl

[45] A. T. Il'ichev, “Solitary waves in media with dispersion and dissipation (a review)”, Fluid Dynam., 35:2 (2000), 157–176 | DOI | MR | Zbl

[46] Y. B. Fu, A. T. Il'ichev, “Localized standing waves in a hyperelastic membrane tube and their stabilization by a mean flow”, Math. Mech. Solids, 20:10 (2015), 1198–1214 | DOI | MR

[47] A. Scarpellini, “Center manifolds of infinite dimensions. I. Main results and applications”, Z. Angew. Math. Phys., 42:1 (1991), 1–32 | DOI | MR | Zbl

[48] L. R. Volevich, A. R. Shirikyan, “Local dynamics for high-order semilinear hyperbolic equations”, Izv. Math., 64:3 (2000), 439–485 | DOI | DOI | MR | Zbl

[49] F. Dias, G. Iooss, “Capillary-gravity interfacial waves in infinite depth”, European J. Mech. B Fluids, 15:3 (1996), 367–393 | MR | Zbl

[50] G. Iooss, P. Kirrmann, “Capillary gravity waves on the free surface of an inviscid fluid of infinite depth. Existence of solitary waves”, Arch. Ration. Mech. Anal., 136:1 (1996), 1–19 | DOI | MR | Zbl

[51] M. D. Groves, M. Haragus, S. M. Sun, “A dimension-breaking phenomenon in the theory of steady gravity-capillary water waves”, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 360:1799 (2002), 2189–2243 | DOI | MR | Zbl

[52] A. R. Champneys, “Homoclinic orbits in reversible systems and their applications in mechanics, fluids and optics”, Phys. D, 112:1-2 (1998), 158–186 | DOI | MR | Zbl

[53] A. R. Champneys, “Homoclinic orbits in reversible systems. II. Multi-bumps and saddle-centres”, CWI Quaterly, 12:3-4 (1999), 185–212 | Zbl

[54] A. Afendikov, A. Mielke, “Multi-pulse solutions to the Navier–Stokes problem between parallel plates”, Z. Angew. Math. Phys., 52:1 (2001), 79–100 | DOI | MR | Zbl

[55] A. Afendikov, B. Fiedler, S. Liebscher, “Plane Kolmogorov flows and Takens–Bogdanov bifurcation without parameters: the singly reversible case”, Asymptot. Anal., 72:1-2 (2011), 31–76 | DOI | MR | Zbl

[56] A. T. Il'ichev, A. Yu. Semenov, “Stability of solitary waves in dispersive media described by a fifth-order evolution equation”, Theoret. Comput. Fluid Dyn., 3:6 (1992), 307–326 | DOI | Zbl

[57] F. Dias, E. A. Kuznetsov, “On the nonlinear stability of solitary wave solutions of the fifth-order Korteweg–de Vries equation”, Phys. Lett. A, 263:1-2 (1999), 98–104 | DOI | MR | Zbl

[58] T. J. Bridges, G. Derks, G. Gottwald, “Stability and instability of solitary waves of the fifth-order KdV equation: a numerical framework”, Phys. D, 172:1-4 (2002), 190–216 | DOI | MR | Zbl

[59] V. A. Pliss, “The reduction principle in the theory of stability of motion”, Soviet Math. Dokl., 5 (1964), 247–250 | MR | Zbl

[60] K. Kirchgässner, “Wave-solutions of reversible systems and applications”, J. Differential Equations, 45:1 (1982), 113–127 | DOI | MR | Zbl

[61] K. Kirchgässner, “Nonlinearly resonant surface waves and homoclinic bifurcation”, Adv. Appl. Math., 26, Academic Press, Boston, MA, 1988, 135–181 | DOI | MR | Zbl

[62] A. Vanderbauwhede, G. Iooss, “Center manifold theory in infinite dimensions”, Dynam. Report. Expositions Dynam. Systems (N.S.), 1, Springer, Berlin, 1992, 125–163 | DOI | MR | Zbl

[63] G. Iooss, M. Adelmeyer, Topics in bifurcation theory and applications, Adv. Ser. Nonlinear Dynam., 3, 2nd ed., World Scientific Publishing Co., Inc., River Edge, NJ, 1998, viii+186 pp. | MR | Zbl

[64] G. Fischer, “Zentrumsmannigfaltigkeiten bei elliptischen Differentialgleichungen”, Math. Nachr., 115 (1984), 137–157 | DOI | MR | Zbl

[65] A. Mielke, “Reduction of quasilinear elliptic equations in cylindrical domains with applications”, Math. Methods Appl. Sci., 10:1 (1988), 51–56 | DOI | MR | Zbl

[66] A. Mielke, “Über maximale $L^p$-Regularität für Differentialgleichungen in Banach- und Hilbert-Raümen”, Math. Ann., 277:1 (1987), 121–133 | DOI | MR | Zbl

[67] A. T. Il'ichev, “Isolated and generalized isolated waves in dispersive media”, J. Appl. Math. Mech., 61:4 (1997), 587–600 | DOI | MR | Zbl

[68] A. Il'ichev, “Stability of solitary waves in nonlinear composite media”, Phys. D, 150:3-4 (2001), 264–277 | DOI | MR | Zbl

[69] C. Elphick, E. Tirapegui, M. E. Brachet, P. Coullet, G. Iooss, “A simple global characterizarion of normal forms of singular vector fields”, Phys. D, 29:1-2 (1987), 95–127 | DOI | MR | Zbl

[70] Y. B. Fu, A. T. Il'ichev, “Solitary waves in fluid-filled elastic tubes: existence, persistence, and the role of axial displacement”, IMA J. Appl. Math., 75:2 (2010), 257–268 | DOI | MR | Zbl

[71] A. Müller, R. Ettema, “Dynamic response of an icebreaker hull to ice breaking”, Proceedings of the 7th IAHR International Symposium on Ice, v. II, Hamburg, W. Germany, 1984, 287–296

[72] A. E. H. Love, A treatise on the mathematical theory of elasticity, 4th ed., Cambridge Univ. Press, Cambridge, 1927, xviii+643 pp. | MR | Zbl

[73] L. D. Landau, E. M. Lifschitz, Lehrbuch der theoretischen Physik, v. VII, Elastizitätstheorie, Akademie-Verlag, Berlin, 1989, x+223 pp. | MR | MR | Zbl

[74] A. T. Ilichev, Uedinennye volny v modelyakh gidromekhaniki, Fizmatlit, M., 2003, 256 pp.

[75] T. Kato, Perturbation theory for linear operators, Grundlehren Math. Wiss., 132, Springer-Verlag, New York, 1966, xix+592 pp. | MR | MR | Zbl | Zbl

[76] A. T. Il'ichev, V. Ya. Tomashpolskii, “Soliton-like structures on a liquid surface under an ice cover”, Theoret. and Math. Phys., 182:2 (2015), 231–245 | DOI | DOI | MR | Zbl

[77] F. Dias, G. Iooss, “Capillary-gravity solitary waves with damped oscillations”, Phys. D, 65:4 (1993), 399–323 | DOI | MR | Zbl

[78] J. R. Wilton, “On ripples”, Phil. Mag. (6), 29:173 (1915), 688–700 | DOI | Zbl

[79] J. A. Zufiria, “Symmetry breaking in periodic and solitary gravity-capillary waves on water of finite depth”, J. Fluid Mech., 184 (1987), 183–206 | DOI | Zbl

[80] T. B. Benjamin, “The solitary wave with surface tension”, Quart. Appl. Math., 40:2 (1982/83), 231–234 | MR | Zbl

[81] D. M. Farmer, J. D. Smith, “Tidal interaction of stratified flow with a sill in Knight Inlet”, Deep-Sea Res., 27:3-4 (1980), 239–254 | DOI

[82] T. R. Akylas, “Envelope solitons with stationary crests”, Phys. Fluids A, 5:4 (1993), 789–791 | DOI | Zbl

[83] R. Grimshaw, B. Malomed, E. Benilov, “Solitary waves with damped oscillatory tails: an analysis of the fifth-order Korteweg–de Vries equation”, Phys. D, 77:4 (1994), 473–485 | DOI | MR | Zbl

[84] M. S. Longuet-Higgins, “Capillary-gravity waves of solitary type and envelope solitons on deep water”, J. Fluid Mech., 252 (1993), 703–711 | DOI | MR | Zbl