Mots-clés : bifurcation
@article{RM_2015_70_6_a2,
author = {A. T. Il'ichev},
title = {Soliton-like structures on a water-ice interface},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {1051--1103},
year = {2015},
volume = {70},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2015_70_6_a2/}
}
A. T. Il'ichev. Soliton-like structures on a water-ice interface. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 70 (2015) no. 6, pp. 1051-1103. http://geodesic.mathdoc.fr/item/RM_2015_70_6_a2/
[1] J. J. Stoker, Water waves. The mathematical theory with applications, Pure Appl. Math., IV, Interscience Publishers, Inc., New York; Interscience Publishers Ltd., London, 1957, xxviii+567 pp. | MR | Zbl | Zbl
[2] V. A. Squire, “On the critical angle for ocean waves entering shore fast ice”, Cold Reg. Sci. Technol., 10:1 (1984), 59–68 | DOI
[3] E. O. Tuck, “An inviscid theory for sliding flexible sheets”, J. Austral. Math. Soc. Ser. B, 23:4 (1982), 403–415 | DOI | MR | Zbl
[4] L. Brevdo, A. Il'ichev, “Exponential neutral stability of a floating ice layer”, Z. Angew. Math. Phys., 49:3 (1998), 401–419 | DOI | MR | Zbl
[5] L. Brevdo, A. Il'ichev, “Multi-modal destabilization of a floating ice layer by wind stress”, Cold Reg. Sci. Technol., 33:1 (2001), 77–89 | DOI
[6] L. Brevdo, A. Il'ichev, “Uni-modal destabilization of a visco-elastic floating ice layer by wind stress”, Eur. J. Mech. A Solids, 25:3 (2006), 509–525 | DOI | MR | Zbl
[7] J. Strathdee, W. H. Robinson, E. M. Haines, “Moving loads on ice plates of finite thickness”, J. Fluid Mech., 226 (1991), 37–61 | DOI | Zbl
[8] L. K. Forbes, “Surface waves of large amplitude beneath an elastic sheet. I. High order series solution”, J. Fluid Mech., 169 (1986), 409–428 | DOI | MR | Zbl
[9] L. K. Forbes, “Surface waves of large amplitude beneath an elastic sheet. II. Galerkin solutions”, J. Fluid Mech., 188 (1988), 491–508 | DOI | MR | Zbl
[10] A. V. Marchenko, “Long waves in shallow liquid under ice cover”, J. Appl. Math. Mech., 52:2 (1988), 180–183 | DOI | Zbl
[11] A. T. Il'ichev, A. V. Marchenko, “Propagation of long nonlinear waves in a ponderable fluid beneath an ice sheet”, Fluid Dynam., 24:1 (1989), 73–79 | DOI | MR | Zbl
[12] S. V. Muzylev, “Volny v okeane pod ledyanym pokrovom: osnovy teorii i modelnye zadachi”, Sovremennye problemy dinamiki okeana i atmosfery, GU “Gidromettsentr Rossii”, “Triada LTD”, M., 2010, 315–345
[13] R. G. Chowdhury, B. N. Mandal, “Motion due to fundamental singularities in finite depth water with an elastic solid cover”, Fluid Dynam. Res., 38:4 (2006), 224–240 | DOI | MR | Zbl
[14] D. Q. Lu, S. Q. Dai, “Generation of transient waves by impulsive disturbances in an inviscid fluid with an ice-cover”, Arch. Appl. Mech., 76:1-2 (2006), 49–63 | DOI | Zbl
[15] D. Q. Lu, S. Q. Dai, “Flexural- and capillary-gravity waves due to fundamental singularities in an inviscid fluid of finite depth”, Internat. J. Engrg. Sci., 46:11 (2008), 1183–1193 | DOI | MR | Zbl
[16] A. A. Savin, A. S. Savin, “Ice cover perturbation by a dipole in motion within a liquid”, Fluid Dyn., 47:2 (2012), 139–146 | DOI | Zbl
[17] A. T. Ilichev, A. A. Savin, A. S. Savin, “Ustanovlenie volny na ledyanom pokrove nad dvizhuschimsya v zhidkosti dipolem”, Dokl. RAN, 444:2 (2012), 156–159 | MR
[18] M. Hărăguş-Courceille, A. Il'ichev, “Three-dimensional solitary waves in the presence of additional surface effects”, Eur. J. Mech. B Fluids, 17:5 (1998), 739–768 | DOI | MR | Zbl
[19] A. Afendikov, A. Mielke, “Bifurcation of homoclinic orbits to a saddle-focus in reversible systems with SO(2)-symmetry”, J. Differential Equations, 159:2 (1999), 370–402 | DOI | MR | Zbl
[20] A. L. Afendikov, A. Mielke, “Unfoldings of reversible vector fields with SO(2)-symmetry and non-semisimple eigenvalue zero of multiplicity four”, Dokl. Math., 60:3 (1999), 332–336 | MR | Zbl
[21] M.A. Lavrent'ev, “On the theory of long waves”, Amer. Math. Soc. Transl., 102, Amer. Math. Soc., Providence, RI, 1954, 1–50 | MR | MR | Zbl
[22] K. O. Friedrichs, D. H. Hyers, “The existence of solitary waves”, Comm. Pure Appl. Math., 7:3 (1954), 517–550 | DOI | MR | Zbl
[23] J. T. Beale, “The existence of solitary water waves”, Comm. Pure Appl. Math., 30:4 (1977), 373–389 | DOI | MR | Zbl
[24] C. J. Amick, K. Kirchgässner, “A theory of solitary water-waves in the presence of surface tension”, Arch. Ration. Mech. Anal., 105:1 (1989), 1–49 | DOI | MR | Zbl
[25] G. Iooss, K. Kirchgässner, “Water waves for small surface tension: an approach via normal form”, Proc. Roy. Soc. Edinburgh Sect. A, 122:3-4 (1992), 267–299 | DOI | MR | Zbl
[26] D. J. Korteweg, G. de Vries, “On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves”, Phil. Mag. (5), 39:240 (1895), 422–443 | DOI | Zbl
[27] G. Iooss, M. C. Pérouème, “Perturbed homoclinic solutions in reversible $1\,{:}\,1$ resonance vector fields”, J. Differential Equations, 102:1 (1993), 62–88 | DOI | MR | Zbl
[28] G. Iooss, K. Kirchgässner, “Bifurcation d'ondes solitaires en présence d'une faible tension superficielle”, C. R. Acad. Sci. Paris Sér. I Math., 311:5 (1990), 265–268 | MR | Zbl
[29] S. M. Sun, M. C. Shen, “Exponentially small estimate for the amplitude of capillary ripples of a generalized solitary wave”, J. Math. Anal. Appl., 172:2 (1993), 533–566 | DOI | MR | Zbl
[30] E. Lombardi, “Orbits homoclinic to exponentially small periodic orbits for a class of reversible systems. Application to water waves”, Arch. Ration. Mech. Anal., 137:3 (1997), 227–304 | DOI | MR | Zbl
[31] F. Dias, G. Iooss, “Ondes solitaires ‘noires’ à l'interface entre deux fluides en présence de tension superficielle”, C. R. Acad. Sci. Paris Sér. I Math., 319:1 (1994), 89–93 | MR | Zbl
[32] C. J. Amick, J. F. Toland, “On solitary water-waves of finite amplitude”, Arch. Ration. Mech. Anal., 76:1 (1981), 9–95 | DOI | MR | Zbl
[33] C. J. Amick, J. F. Toland, “On periodic water-waves and their convergence to solitary waves in the long-wave limit”, Philos. Trans. R. Soc. Lond. Ser. A, 303:1481 (1981), 633–669 | DOI | MR | Zbl
[34] A. I. Nekrasov, “Tochnaya teoriya voln ustanovivshegosya vida na poverkhnosti tyazheloi zhidkosti”, Sobranie sochinenii, v. 1, Fizmatgiz, M., 1961, 358–439
[35] J. L. Bona, D. K. Bose, R. E. L. Turner, “Finite-amplitude steady waves in stratified fluids”, J. Math. Pures Appl. (9), 62:4 (1983), 389–439 | MR | Zbl
[36] C. J. Amick, R. E. L. Turner, “A global theory of internal solitary waves in two-fluid systems”, Trans. Amer. Math. Soc., 298:2 (1986), 431–484 | DOI | MR | Zbl
[37] E. A. Karabut, “Asymptitic expansions in the problem of a solitary wave”, J. Fluid Mech., 319 (1996), 109–123 | DOI | MR | Zbl
[38] E. A. Karabut, “An approximation for the highest gravity waves on water of finite depth”, J. Fluid Mech., 372 (1998), 45–70 | DOI | MR | Zbl
[39] T. J. Bridges, F. Dias, D. Menasce, “Steady three-dimensional water-wave patterns on a finite-depth fluid”, J. Fluid Mech., 436 (2001), 145–175 | DOI | MR | Zbl
[40] A. Il'ichev, “Steady waves in a cold plasma”, J. Plasma Phys., 55:2 (1996), 181–194 | DOI
[41] A. T. Il'ichev, “Solitary waves in a cold plasma”, Math. Notes, 59:5 (1996), 518–524 | DOI | DOI | MR | Zbl
[42] A. T. Il'ichev, “Solitary wave trains in a cold plasma”, Fluid Dynam., 31:5 (1996), 754–760 | DOI | Zbl
[43] F. Dias, A. Il'ichev, “Interfacial waves with free-surface boundary conditions: an approach via a model equation”, Phys. D, 150:3-4 (2001), 278–300 | DOI | MR | Zbl
[44] A. Il'ichev, “Faraday resonance: asymptotic theory of surface waves”, Phys. D, 119:3-4 (1998), 327–351 | DOI | MR | Zbl
[45] A. T. Il'ichev, “Solitary waves in media with dispersion and dissipation (a review)”, Fluid Dynam., 35:2 (2000), 157–176 | DOI | MR | Zbl
[46] Y. B. Fu, A. T. Il'ichev, “Localized standing waves in a hyperelastic membrane tube and their stabilization by a mean flow”, Math. Mech. Solids, 20:10 (2015), 1198–1214 | DOI | MR
[47] A. Scarpellini, “Center manifolds of infinite dimensions. I. Main results and applications”, Z. Angew. Math. Phys., 42:1 (1991), 1–32 | DOI | MR | Zbl
[48] L. R. Volevich, A. R. Shirikyan, “Local dynamics for high-order semilinear hyperbolic equations”, Izv. Math., 64:3 (2000), 439–485 | DOI | DOI | MR | Zbl
[49] F. Dias, G. Iooss, “Capillary-gravity interfacial waves in infinite depth”, European J. Mech. B Fluids, 15:3 (1996), 367–393 | MR | Zbl
[50] G. Iooss, P. Kirrmann, “Capillary gravity waves on the free surface of an inviscid fluid of infinite depth. Existence of solitary waves”, Arch. Ration. Mech. Anal., 136:1 (1996), 1–19 | DOI | MR | Zbl
[51] M. D. Groves, M. Haragus, S. M. Sun, “A dimension-breaking phenomenon in the theory of steady gravity-capillary water waves”, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 360:1799 (2002), 2189–2243 | DOI | MR | Zbl
[52] A. R. Champneys, “Homoclinic orbits in reversible systems and their applications in mechanics, fluids and optics”, Phys. D, 112:1-2 (1998), 158–186 | DOI | MR | Zbl
[53] A. R. Champneys, “Homoclinic orbits in reversible systems. II. Multi-bumps and saddle-centres”, CWI Quaterly, 12:3-4 (1999), 185–212 | Zbl
[54] A. Afendikov, A. Mielke, “Multi-pulse solutions to the Navier–Stokes problem between parallel plates”, Z. Angew. Math. Phys., 52:1 (2001), 79–100 | DOI | MR | Zbl
[55] A. Afendikov, B. Fiedler, S. Liebscher, “Plane Kolmogorov flows and Takens–Bogdanov bifurcation without parameters: the singly reversible case”, Asymptot. Anal., 72:1-2 (2011), 31–76 | DOI | MR | Zbl
[56] A. T. Il'ichev, A. Yu. Semenov, “Stability of solitary waves in dispersive media described by a fifth-order evolution equation”, Theoret. Comput. Fluid Dyn., 3:6 (1992), 307–326 | DOI | Zbl
[57] F. Dias, E. A. Kuznetsov, “On the nonlinear stability of solitary wave solutions of the fifth-order Korteweg–de Vries equation”, Phys. Lett. A, 263:1-2 (1999), 98–104 | DOI | MR | Zbl
[58] T. J. Bridges, G. Derks, G. Gottwald, “Stability and instability of solitary waves of the fifth-order KdV equation: a numerical framework”, Phys. D, 172:1-4 (2002), 190–216 | DOI | MR | Zbl
[59] V. A. Pliss, “The reduction principle in the theory of stability of motion”, Soviet Math. Dokl., 5 (1964), 247–250 | MR | Zbl
[60] K. Kirchgässner, “Wave-solutions of reversible systems and applications”, J. Differential Equations, 45:1 (1982), 113–127 | DOI | MR | Zbl
[61] K. Kirchgässner, “Nonlinearly resonant surface waves and homoclinic bifurcation”, Adv. Appl. Math., 26, Academic Press, Boston, MA, 1988, 135–181 | DOI | MR | Zbl
[62] A. Vanderbauwhede, G. Iooss, “Center manifold theory in infinite dimensions”, Dynam. Report. Expositions Dynam. Systems (N.S.), 1, Springer, Berlin, 1992, 125–163 | DOI | MR | Zbl
[63] G. Iooss, M. Adelmeyer, Topics in bifurcation theory and applications, Adv. Ser. Nonlinear Dynam., 3, 2nd ed., World Scientific Publishing Co., Inc., River Edge, NJ, 1998, viii+186 pp. | MR | Zbl
[64] G. Fischer, “Zentrumsmannigfaltigkeiten bei elliptischen Differentialgleichungen”, Math. Nachr., 115 (1984), 137–157 | DOI | MR | Zbl
[65] A. Mielke, “Reduction of quasilinear elliptic equations in cylindrical domains with applications”, Math. Methods Appl. Sci., 10:1 (1988), 51–56 | DOI | MR | Zbl
[66] A. Mielke, “Über maximale $L^p$-Regularität für Differentialgleichungen in Banach- und Hilbert-Raümen”, Math. Ann., 277:1 (1987), 121–133 | DOI | MR | Zbl
[67] A. T. Il'ichev, “Isolated and generalized isolated waves in dispersive media”, J. Appl. Math. Mech., 61:4 (1997), 587–600 | DOI | MR | Zbl
[68] A. Il'ichev, “Stability of solitary waves in nonlinear composite media”, Phys. D, 150:3-4 (2001), 264–277 | DOI | MR | Zbl
[69] C. Elphick, E. Tirapegui, M. E. Brachet, P. Coullet, G. Iooss, “A simple global characterizarion of normal forms of singular vector fields”, Phys. D, 29:1-2 (1987), 95–127 | DOI | MR | Zbl
[70] Y. B. Fu, A. T. Il'ichev, “Solitary waves in fluid-filled elastic tubes: existence, persistence, and the role of axial displacement”, IMA J. Appl. Math., 75:2 (2010), 257–268 | DOI | MR | Zbl
[71] A. Müller, R. Ettema, “Dynamic response of an icebreaker hull to ice breaking”, Proceedings of the 7th IAHR International Symposium on Ice, v. II, Hamburg, W. Germany, 1984, 287–296
[72] A. E. H. Love, A treatise on the mathematical theory of elasticity, 4th ed., Cambridge Univ. Press, Cambridge, 1927, xviii+643 pp. | MR | Zbl
[73] L. D. Landau, E. M. Lifschitz, Lehrbuch der theoretischen Physik, v. VII, Elastizitätstheorie, Akademie-Verlag, Berlin, 1989, x+223 pp. | MR | MR | Zbl
[74] A. T. Ilichev, Uedinennye volny v modelyakh gidromekhaniki, Fizmatlit, M., 2003, 256 pp.
[75] T. Kato, Perturbation theory for linear operators, Grundlehren Math. Wiss., 132, Springer-Verlag, New York, 1966, xix+592 pp. | MR | MR | Zbl | Zbl
[76] A. T. Il'ichev, V. Ya. Tomashpolskii, “Soliton-like structures on a liquid surface under an ice cover”, Theoret. and Math. Phys., 182:2 (2015), 231–245 | DOI | DOI | MR | Zbl
[77] F. Dias, G. Iooss, “Capillary-gravity solitary waves with damped oscillations”, Phys. D, 65:4 (1993), 399–323 | DOI | MR | Zbl
[78] J. R. Wilton, “On ripples”, Phil. Mag. (6), 29:173 (1915), 688–700 | DOI | Zbl
[79] J. A. Zufiria, “Symmetry breaking in periodic and solitary gravity-capillary waves on water of finite depth”, J. Fluid Mech., 184 (1987), 183–206 | DOI | Zbl
[80] T. B. Benjamin, “The solitary wave with surface tension”, Quart. Appl. Math., 40:2 (1982/83), 231–234 | MR | Zbl
[81] D. M. Farmer, J. D. Smith, “Tidal interaction of stratified flow with a sill in Knight Inlet”, Deep-Sea Res., 27:3-4 (1980), 239–254 | DOI
[82] T. R. Akylas, “Envelope solitons with stationary crests”, Phys. Fluids A, 5:4 (1993), 789–791 | DOI | Zbl
[83] R. Grimshaw, B. Malomed, E. Benilov, “Solitary waves with damped oscillatory tails: an analysis of the fifth-order Korteweg–de Vries equation”, Phys. D, 77:4 (1994), 473–485 | DOI | MR | Zbl
[84] M. S. Longuet-Higgins, “Capillary-gravity waves of solitary type and envelope solitons on deep water”, J. Fluid Mech., 252 (1993), 703–711 | DOI | MR | Zbl